
WASHINGTON UNIVERSITY IN ST.LOUIS

McKelvey School of Engineering
Department of Computer Science and Engineering

Dissertation Examination Committee:
Yevgeniy Vorobeychik, Chair

Ayan Chakrabarti
Sanmay Das

Bruno Sinopoli
Ning Zhang

Towards Deploying Robust Machine Learning Systems
by

Liang Tong

A dissertation presented to
The Graduate School

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

May 2021
St. Louis, Missouri

© 2021, Liang Tong

Table of Contents

List of Figures ... viii

List of Tables .. xvi

Acknowledgments .. xviii

Abstract ... xxi

Chapter 1: Introduction .. 1

1.1 Motivation and Challenges .. 1

1.2 Overview of The Thesis .. 4

Chapter 2: Background and Related Work .. 6

2.1 Machine Learning in Security... 6

2.1.1 Malware Detection ... 6

2.1.2 Face Recognition ... 8

2.2 Decision-Time Attacks on Machine Learning Systems 9

2.2.1 Realizable Attacks ... 9

2.2.2 Feature-Space Attack Models ... 13

2.3 Robust Learning ... 14

2.3.1 Adversarial Training... 15

2.3.2 Randomized Smoothing .. 15

2.4 Reinforcement Learning .. 16

2.4.1 Deep Reinforcement Learning... 16

2.4.2 Multi-Agent Reinforcement Learning ... 17

2.5 Alert Management and Prioritization .. 18

ii

I Systematizing Adversarial Evaluation of Machine Learning
Systems 20

Chapter 3: Fine-Grained Robustness Evaluation for Face Recognition Sys-
tems ... 21

3.1 Overview ... 22

3.2 Methodology .. 24

3.2.1 Perturbation Type (P) .. 25

3.2.2 Attacker’s System Knowledge (K) ... 29

3.2.3 Attacker’s Goal (G).. 31

3.2.4 Attacker’s Capability (C) .. 33

3.3 Experimental Results ... 35

3.3.1 Experimental Setup.. 35

3.3.2 Robustness of Face Recognition Components 38

3.3.3 Robustness Under Universal Attacks.. 40

3.3.4 Is “Robust” Face Recognition Really Robust? 41

3.4 Conclusion ... 43

II Robust Learning against Decision-Time Attacks 44

Chapter 4: How Robust Is Robust ML? .. 45

4.1 Overview ... 46

4.2 A Framework for Validating Models of ML Evasion Attacks 48

4.3 Experimental Methodology.. 51

4.3.1 PDF Document Structure.. 51

4.3.2 Target Classifiers ... 52

4.3.3 Realizable Evasion Attacks .. 54

4.3.4 Feature-Space Evasion Model ... 55

4.3.5 Datasets .. 56

4.3.6 Implementation of Iterative Adversarial Retraining 57

4.3.7 Evaluation Metrics ... 57

4.4 Efficacy of Feature-Space Attack Models .. 58

4.4.1 Structure-Based PDF Malware Classification 58

iii

4.4.2 Content-Based PDF Malware Classification................................... 62

4.4.3 Discussion .. 64

4.5 Conclusion ... 65

Chapter 5: Defending against Realizable Attacks in PDF Malware Detection 67

5.1 Overview ... 68

5.2 Identifying Conserved Features... 69

5.2.1 Structural Path Deletion ... 70

5.2.2 Structural Path Replacement ... 71

5.2.3 Obtaining a Uniform Conserved Feature Set.................................. 72

5.2.4 Identifying Conserved Features for Other Classifiers 73

5.3 Classifying Using Only Conserved Features... 74

5.4 Feature-Space Model with Conserved Features .. 77

5.4.1 SL2013 .. 78

5.4.2 Hidost ... 79

5.4.3 Binarized PDFRate.. 80

5.5 Additional Realizable Evasion Attacks ... 81

5.5.1 Mimicry and Mimicry+ Attacks.. 81

5.5.2 MalGAN Attack .. 84

5.5.3 Reverse Mimicry Attack .. 85

5.5.4 The Custom Attack ... 86

5.6 Conclusion ... 88

Chapter 6: Defending against Non-Salient Adversarial Examples in Image
Classification .. 90

6.1 Overview ... 91

6.2 Dual-Perturbation Attacks .. 93

6.2.1 Motivation ... 93

6.2.2 Modeling Non-Salient Adversarial Examples 94

6.2.3 Identifying Foreground and Background 96

6.2.4 Computing Dual-Perturbation Attacks ... 97

6.3 Defense Approach ... 99

iv

6.4 Experimental Results ... 100

6.4.1 Experimental Setup.. 100

6.4.2 Saliency Analysis of Dual-Perturbation Adversarial Examples 101

6.4.3 Robustness against Non-Salient Adversarial Examples 103

6.4.4 Generalizability of Defense... 105

6.4.5 Analysis of Defense .. 107

6.5 Conclusion ... 108

III Robust Detection Pipeline 110

Chapter 7: Finding Needles in a Moving Haystack: Prioritizing Alerts with
Adversarial Reinforcement Learning .. 111

7.1 Overview ... 112

7.2 System Model... 113

7.2.1 Attack Detection Environment (ADE) Model 116

7.2.2 Threat Model ... 117

7.2.3 Defender Model ... 119

7.2.4 An Illustrative Example .. 121

7.3 Game Theoretic Model of Robust Alert Prioritization 122

7.3.1 Strategies ... 122

7.3.2 Utilities ... 124

7.3.3 Solution Concept ... 126

7.4 Computing Robust Alert Prioritization Policies 127

7.4.1 Solution Overview.. 127

7.4.2 Policy-Based Double Oracle Method .. 128

7.4.3 Approximate Best Response Oracles with Neural Reinforcement Learning 130

7.4.4 Preprocessing.. 135

7.5 Experimental Results ... 135

7.5.1 Experimental Methodology .. 135

7.5.2 Case Study I: Network Intrusion Detection 137

7.5.3 Case Study II: Fraud Detection .. 143

v

7.5.4 Computational Cost ... 149

7.6 Conclusion ... 150

IV Robust Decentralized Learning Ecosystem 152

Chapter 8: One VS. Many: Adversarial Regression with Multiple Learners 153

8.1 Overview ... 153

8.2 Model ... 154

8.2.1 Modeling the Players .. 155

8.2.2 The Multi-Learner Stackerlberg Game ... 157

8.3 Theoretical Analysis .. 160

8.3.1 Approximation of The Game.. 160

8.3.2 Existence of Nash Equilibrium.. 162

8.3.3 Uniqueness of Nash Equilibrium ... 163

8.4 Computing the Equilibrium... 164

8.5 Robustness Analysis .. 166

8.6 Experimental Results ... 169

8.6.1 Experimental Setup.. 169

8.6.2 The Red Wine Dataset ... 171

8.6.3 The PDF Dataset .. 173

8.7 Conclusion ... 175

Chapter 9: Conclusion and Future Directions .. 176

References .. 180

Appendix A: Supplement for Chapter 3 .. [191]

A.1 Robustness of Face Recognition Components .. [191]

A.1.1 Open-Set Systems Under Dodging Attacks [191]

A.1.2 Closed-Set Systems Under Impersonation Attacks [194]

A.1.3 Open-Set Systems Under Impersonation Attacks [195]

A.2 Efficacy of Using Momentum and Ensemble Models in Transfer-based Attacks[196]

A.3 Universal Attacks .. [199]

Appendix B: Supplement for Chapter 6 .. [200]

vi

B.1 Alternative Approach for Modeling Suspiciousness [200]

B.2 Datasets .. [201]

B.2.1 Segment-6 .. [201]

B.2.2 STL-10 .. [201]

B.2.3 ImageNet-10 ... [201]

B.3 Implementations ... [204]

B.4 Adversarial Training Using `2 Attacks on STL-10..................................... [205]

B.5 Adversarial Training Using `2 Attacks on Segment-6 [207]

B.6 Adversarial Training Using `∞ Attacks on ImageNet-10............................. [208]

B.7 Adversarial Training Using `∞ Attacks on STL-10.................................... [210]

B.8 Adversarial Training Using `∞ Attacks on Segment-6................................ [213]

B.9 Attacking Randomzied Classifiers ... [214]

B.9.1 Variance in Gaussian Data Augmentation [215]

B.9.2 Number of Samples with Gaussian Noise at Prediction Time [215]

B.10 Visualization of Loss Gradient ... [217]

B.11 Examples of Dual-Perturbation Attacks ... [217]

Appendix C: Supplement for Chapter 8 .. [219]

C.1 Proof of Lemma 2 ... [219]

C.2 Proof of Lemma 3 ... [222]

C.3 Proof of Theorem 2 ... [223]

C.4 Proof of Theorem 4 ... [225]

C.5 Supplementary Results for The Red Wine Dataset [227]

C.6 Supplementary Results for The Boston Dataset [229]

C.7 Supplementary Results for The PDF dataset... [230]

vii

List of Figures

Figure 2.1: Closed-set and open-set face recognition systems............................ 7

Figure 2.2: EvadeML [126], a realizable attack on PDF Malware Classifiers. 11

Figure 2.3: Sticker attack: an example of physically realizable attacks on face
recognition systems. Left: original input image. Middle: adversar-
ial sticker on the face. Right: predicted identity. In practice, the
adversarial stickers can be printed and put on human faces. 12

Figure 3.1: An overview of FaceSec. ... 25

Figure 3.2: Perturbation types in FaceSec.. 26

Figure 3.3: Transformations for the grid-level face mask attack. 27

Figure 3.4: Mask matrices for physically realizable attacks in FaceSec. 37

Figure 3.5: Attack success rate of dodging physically realizable attacks on closed-
set systems with DOA retraining. ... 41

Figure 4.1: A conceptual model of how an attack (either realizable or using a
feature-space model) can be used in improving ML security. Let
defense be parameterized by θ, and an attack reacting to the particular
defense θ (e.g., attacker evades the learned ML model h(x)). We
wish to choose the best defense θ against such a reactive attacker, as
captured by our attack model. ... 48

Figure 4.2: Evasion robustness under EvadeML test (left) and performance on
non-adversarial data (right) of different classifiers for SL2013. 59

Figure 4.3: Evasion robustness with retraining iterations (left) and generations of
the EvadeML attack test (right). .. 60

Figure 4.4: Evasion robustness under EvadeML test (left) and performance on
non-adversarial data (right) of different classifiers for Hidost. 62

Figure 4.5: Evasion robustness under EvadeML test (left) and performance on
non-adversarial data (right) of different classifiers for PDFRate-R. 63

viii

Figure 4.6: Evasion robustness under EvadeML test (left) and performance on
non-adversarial data (right) of different classifiers for PDFRate-B. 64

Figure 5.1: Classifying with conserved features: comparing evasion robustness
(left) and ROC curves (right). .. 76

Figure 5.2: Evasion robustness (left) and performance on non-adversarial data
(right) of different variants of SL2013... 78

Figure 5.3: Evasion robustness (left) and performance on non-adversarial data
(right) of different variants of Hidost. .. 79

Figure 5.4: Evasion robustness (left) and performance on non-adversarial data
(right) of different variants of PDFRate-B. 80

Figure 5.5: Robustness to Mimicry attack. Left: PDFRate-R (note that our notion
of CFR is not applicable here). Right: PDFRate-B. 83

Figure 5.6: Robustness to Mimicry+ attack. Left: PDFRate-R (note that our
notion of CFR is not applicable here). Right: PDFRate-B. 83

Figure 5.7: Robustness to MalGAN attack. SL2013 (left), Hidost (middle), PDFRate-
B (right). .. 84

Figure 5.8: Robustness to Reverse Mimicry attack. SL2013 (top left), Hidost (top
right), PDFRate-R (bottom left), PDFRate-B (bottom right). Note
that our notions of CFR and CF for PDFRate-R is not applicable here. 86

Figure 5.9: Robustness to the custom attack. Left: PDFRate-R (note that our
notions of CFR and CF are not applicable here). Right: PDFRate-B. 87

Figure 6.1: Visualization of loss gradient of different classifiers with respect to
pixels of non-adversarial inputs. Clean is the model that takes no
defense. AT-PGD denotes adversarial training using the PGD attack.
AT-Dual is our proposed defense. It can be seen that AT-Dual aligns
significantly better with human perception. 92

Figure 6.2: Semantic distinction between foreground and background. Left: Orig-
inal image of bears. Middle: Adversarial example with `∞ bounded
perturbations (ε = 40/255) on the background, the semantic meaning
(bear) is preserved. Right: Adversarial example with `∞ bounded
perturbations (ε = 40/255) on the foreground, with more ambiguous
semantics. .. 94

ix

Figure 6.3: Saliency analysis. Dual-perturbation attacks are performed by using
{εF , εB} = {2.0, 20.0} and a variety of λ displayed in the figure. Left:
foreground scores of dual-perturbation examples in response to different
classifiers. Right: accuracy of classifiers on dual-perturbation examples
with salience control. .. 102

Figure 6.4: An illustration of dual-perturbation attacks. Adversarial examples are
with large `∞ perturbations on the background (εB = 20/255) and
small `∞ perturbations on the foreground (εF = 4/255). A parameter
λ is used to control background salience explicitly. A larger λ results
in less salient background under the same magnititude of perturbation. 102

Figure 6.5: Robustness to white-box `2 attacks on ImageNet-10. Left: dual-
perturbation attacks with different foreground distortions. εB is fixed
to be 20.0 and λ = 0.005. Middle: dual-perturbation attacks with
different background distortions. εF is fixed to be 2.0 and λ = 0.005.
Right: PGD attacks. .. 103

Figure 6.6: Robustness against adversarial examples transferred from other models
on ImageNet-10. Left: `2 dual-perturbation attacks performed by
using {εF , εB, λ} = {2.0, 20.0, 0.005} on different source models. Right:
`2 PGD attacks with ε = 2.0 on different source models. 104

Figure 6.7: Robustness to white-box background attacks on ImageNet-10. εF is
fixed to be 0.0 and λ = 0.005. ... 105

Figure 6.8: Robustness to additional white-box attacks on ImageNet-10. Top
left: 20 steps of `∞ PGD attacks. Top right: 20 steps of `∞ dual-
perturbation attacks with different foreground distortions. εB is fixed
to be 20/255 and λ = 0.005. Bottom left: 20 steps of `∞ dual-
perturbation attacks with different background distortions. εF is fixed
to be 4/255 and λ = 0.005. Bottom right: `0 JSMA attacks. 106

Figure 7.1: System model. The Attack Oracle computes the attacker’s policy for
executing attacks, which is implemented by the Attack Generator and
then triggers alerts observed by the Attack Detection Environment.
The Defense Oracle computes the defender’s alert prioritization policy,
which is implemented by the Alert Analyzer. 114

Figure 7.2: The game solver based on the double oracle algorithm. 128

Figure 7.3: The interactions among actor, critic and environment. 132

x

Figure 7.4: Intrusion detection: loss of the defender when it knows the attack
budget. Left: Defender’s loss for different defense budgets, with attack
budget fixed at 120. Right: Defender’s loss for different attack budgets,
with defense budget fixed at 1000. .. 141

Figure 7.5: Intrusion detection: loss of the defender when it is uncertain of the
attack budget. Left: def. budget=500. Right: def. budget=1500. The
defender’s estimate of the attack budget is 120 in all cases. Thus,
if the actual attack budget is 60, then the defender overestimates
the adversary’s budget; if the actual attack budget is 180, then it is
underestimated by the defender.. 141

Figure 7.6: Intrusion detection: loss of the defender when it has different estimates
of the attack budget. ... 142

Figure 7.7: Intrusion detection: loss of the defender when it is certain of the attack
budget but is uncertain of the attack policy. The attack budget is
fixed as 120. Left: def. budget=500. Right: def. budget=1500. 143

Figure 7.8: Fraud detection: loss of the defender when it knows the attack budget.
Left: Defender’s loss by its budget, with attack budget adv_budget
being fixed as 2. Right: Defender’s loss by attack budget, with defense
budget def_budget being fixed as 20. .. 147

Figure 7.9: Fraud detection: loss of the defender when it is uncertain of the attack
budget. Left: def. budget=10. Right: def. budget=30. The defender’s
estimate of the attack budget is 2. If the actual attack budget is 1,
then the defender overestimates the adversary’s budget; if the actual
attack budget is 3, then it is underestimated. 147

Figure 7.10: Fraud detection: loss of the defender when it has different estimates of
the attack budget. ... 148

Figure 7.11: Fraud detection: loss of the defender when it is certain of the attack
budget but is uncertain of the attack policy. The attack budget is
fixed as 2. Left: def. budget=10. Right: def. budget=30.................. 149

Figure 7.12: Computational cost. Left: Number of double oracle iterations in
network intrusion detection with adv. budget=120. Right: Number of
double oracle iterations in fraud detection with adv. budget=2. 149

Figure 8.1: RMSE of y′ and y on the red wine dataset. The defender knows λ, β,
and z. ... 172

xi

Figure 8.2: The average RMSE across different values of actual λ and β on the red
wine dataset. Upper Left: MLSG ; Upper Right: Lasso; Lower Left:
Ridge; Lower Right: OLS. ... 173

Figure 8.3: RMSE of y′ and y on PDF dataset. The defender knows λ, β, and z. 174

Figure 8.4: The average RMSE across different values of actual λ and β on PDF
dataset. Upper Left: MLSG ; Upper Right: Lasso; Lower Left: Ridge;
Lower Right: OLS. .. 175

Figure A.1: Attack success rate of dodging attacks with different open-set target
and surrogate models. Upper left: PGD attack. Upper right: Eyeglass
frame attack. Lower left: Sticker attack. Lower right: Face mask
attack. ... [192]

Figure A.2: Attack success rate of impersonation attacks with different open-set
target and surrogate models. Upper left: PGD attack. Upper right:
Eyeglass frame attack. Lower left: Sticker attack. Lower right:Face
mask attack. ... [194]

Figure B.1: An illustration of dual-perturbation attacks that leverages fixation
prediction to model suspiciousness. Adversarial examples are with
large `∞ perturbations on the background (εB = 20/255) and small
`∞ perturbations on the foreground (εF = 4/255). A parameter λ is
used to control background salience explicitly. Our attack produces
non-salient background when λ 6= 0. .. [201]

Figure B.2: Saliency analysis. The `2 dual-perturbation attacks are performed by
using {εF , εB} = {1.0, 5.0}, and a variety of λ displayed in the figure.
Left: foreground scores of dual-perturbation examples in response to
different classifiers. Right: accuracy of classifiers on dual-perturbation
examples with salience control. ... [205]

Figure B.3: Robustness to white-box `2 attacks on STL-10. Left: `2 dual-perturbation
attacks with different foreground distortions. εB is fixed to be 5.0 and
λ = 0.0005. Middle: `2 dual-perturbation attacks with different back-
ground distortions. εF is fixed to be 1.0 and λ = 0.0005. Right: `2

PGD attacks. .. [206]

Figure B.4: Robustness against adversarial examples transferred from other models
on STL-10. Left: `2 dual-perturbation attacks performed by using
{εF , εB, λ} = {1.0, 5.0, 0.0005} on different source models. Right: `2

PGD attacks with ε = 1.0 on different source models. [206]

xii

Figure B.5: Robustness to additional white-box attacks on STL-10. Left: 20 steps
of `∞ PGD attacks. Middle left: 20 steps of `∞ dual-perturbation
attacks with different foreground distortions. εB is fixed to be 20/255
and λ = 0.0005. Middle right: 20 steps of `∞ dual-perturbation
attacks with different background distortions. εF is fixed to be 4/255
and λ = 0.0005. Right: `0 JSMA attacks. [206]

Figure B.6: Robustness to white-box `2 attacks on Segment-6. Left: `2 dual-
perturbation attacks with different foreground and background distor-
tions. Right: `2 PGD attacks. .. [207]

Figure B.7: Robustness against adversarial examples transferred from other models
on Segment-6. Left: `2 dual-perturbation attacks performed by using
{εF , εB} = {0.5, 2.5} on different source models. Right: `2 PGD attacks
with ε = 0.5 on different source models. [208]

Figure B.8: Robustness to additional white-box attacks on Segment-6. Left: 20
steps of `∞ PGD attacks. Middle: 20 steps of `∞ dual-perturbation
attacks with different foreground and background distortions. Right:
`0 JSMA attacks. ... [208]

Figure B.9: Saliency analysis. The `∞ dual-perturbation attacks are performed
by using {εF , εB} = {4/255, 20/255}, and a variety of λ displayed
in the figure. Left: foreground scores of dual-perturbation examples
in response to different classifiers. Right: accuracy of classifiers on
dual-perturbation examples with salience control. [209]

Figure B.10: Robustness to white-box `∞ attacks on ImageNet-10. Left: `∞ dual-
perturbation attacks with different foreground distortions. εB is fixed
to be 20/255 and λ = 0.005. Middle: `∞ dual-perturbation attacks
with different background distortions. εF is fixed to be 4/255 and
λ = 0.005. Right: `∞ PGD attacks. ... [209]

Figure B.11: Robustness against adversarial examples transferred from other models
on ImageNet-10. Left: `∞ dual-perturbation attacks performed by
using {εF , εB, λ} = {4/255, 20/255, 0.005} on different source models.
Right: `∞ PGD attacks with ε = 4/255 on different source models. .. [210]

Figure B.12: Robustness to additional white-box attacks on ImageNet-10. Left: 100
steps of `2 PGD attacks. Middle left: 100 steps of `2 dual-perturbation
attacks with different foreground distortions. εB is fixed to be 2.0 and
λ = 0.005. Middle right: 100 steps of `2 dual-perturbation attacks with
different background distortions. εF is fixed to be 20.0 and λ = 0.005.
Right: `0 JSMA attacks. ... [210]

xiii

Figure B.13: Saliency analysis. The `∞ dual-perturbation attacks are performed
by using {εF , εB} = {4/255, 20/255}, and a variety of λ displayed
in the figure. Left: foreground scores of dual-perturbation examples
in response to different classifiers. Right: accuracy of classifiers on
dual-perturbation examples with salience control. [211]

Figure B.14: Robustness to white-box `∞ attacks on STL-10. Left: `∞ dual-
perturbation attacks with different foreground distortions. εB is fixed
to be 20/255 and λ = 0.0005. Middle: `∞ dual-perturbation attacks
with different background distortions. εF is fixed to be 4/255 and
λ = 0.0005. Right: `∞ PGD attacks. .. [211]

Figure B.15: Robustness against adversarial examples transferred from other models
on STL-10. Left: `∞ dual-perturbation attacks performed by using
{εF , εB, λ} = {4/255, 20/255, 0.0005} on different source models. Right:
`∞ PGD attacks with ε = 4/255 on different source models. [212]

Figure B.16: Robustness to additional white-box attacks on STL-10. Left: 100 steps
of `2 PGD attacks. Middle left: 100 steps of `2 dual-perturbation
attacks with different foreground distortions. εB is fixed to be 5.0
and λ = 0.0005. Middle right: 100 steps of `2 dual-perturbation
attacks with different background distortions. εF is fixed to be 1.0 and
λ = 0.0005. Right: `0 JSMA attacks. ... [212]

Figure B.17: Robustness to white-box `∞ attacks on Segment-6. Left: `∞ dual-
perturbation attacks with different foreground and background distor-
tions. Right: `∞ PGD attacks. ... [213]

Figure B.18: Robustness against adversarial examples transferred from other models
on Segment-6. Left: `∞ dual-perturbation attacks performed by using
{εF , εB} = {8/255, 40/255} on different source models. Right: `∞
PGD attacks with ε = 8/255 on different source models. [214]

Figure B.19: Robustness to additional white-box attacks on Segment-6. Left: 100
steps of `2 PGD attacks. Middle: 100 steps of `2 dual-perturbation
attacks with different foreground and background distortions. Right:
`0 JSMA attacks. ... [214]

Figure B.20: Visualization of loss gradient of different classifiers with respect to
pixels of non-adversarial inputs. AT-PGD and AT-Dual were obtained
using adversarial training with corresponding `2 norm attacks. [217]

Figure B.21: Dual-perturbation attacks. Adversarial examples are produced in
response to the Clean model for each dataset. [218]

xiv

Figure C.1: Overestimated z, λ̂ = 0.5, β̂ = 0.8.The average RMSE across different
values of actual λ and β on the redwine dataset. From left to right:
MLSG, Lasso, Ridge, OLS. ... [227]

Figure C.2: Overestimated z, λ̂ = 1.5, β̂ = 0.8. The average RMSE across different
values of actual λ and β on the red wine dataset. From left to right:
MLSG, Lasso, Ridge, OLS. ... [228]

Figure C.3: Underestimated z, λ̂ = 1.5, β̂ = 0.8. The average RMSE across
different values of actual λ and β on the red wine dataset. From left
to right: MLSG, Lasso, Ridge, OLS. ... [228]

Figure C.4: The defender knows λ, β, and z. RMSE of y
′ and y on the Boston

dataset. The defender knows λ, β, and z. [229]

Figure C.5: Overestimated z, λ̂ = 0.3, β̂ = 0.8. The average RMSE across different
values of actual λ and β on the Boston dataset. From left to right:
MLSG, Lasso, Ridge, OLS. .. [229]

Figure C.6: Underestimated z, λ̂ = 0.3, β̂ = 0.8. The average RMSE across
different values of actual λ and β on the Boston dataset. From left to
right: MLSG, Lasso, Ridge, OLS. ... [230]

Figure C.7: Overestimated z, λ̂ = 1.5, β̂ = 0.5. The average RMSE across different
values of actual λ and β on PDF dataset. From left to right: MLSG,
Lasso, Ridge, OLS. .. [230]

xv

List of Tables

Table 3.1: Optimization formulations of grid-level face mask attacks. 26

Table 3.2: Optimization formulations by the attacker’s goal. 32

Table 3.3: Optimization formulations of universal dodging attacks. 35

Table 3.4: Open-set face recognition systems in our experiments. 36

Table 3.5: Attack success rate of dodging attacks on closed-set face recognition
systems by the attacker’s system knowledge. Z represents zero knowl-
edge, T is training set, A is neural architecture, and F represents full
knowledge.. 38

Table 3.6: Attack success rate of dodging attacks on open-set face recognition
systems with zero knowledge. .. 39

Table 3.7: Attack success rate of dodging attacks on closed-set face recognition
systems by the universality of adversarial examples. Here, N represents
the batch size of face images that share a universal perturbation. 40

Table 4.1: Target classifiers. .. 52

Table 5.1: Conserved features and their relevance to JavaScript. 75

Table 5.2: Transformation of entry names in the custom attack....................... 87

Table 7.1: Notation summary. .. 115

Table 7.2: Architecture of the implemented policy and value networks. 136

Table 7.3: Alert types of Suricata in our experiments. 138

Table 7.4: Attack actions and alert types used in the case study of intrusion
detection. .. 139

Table 7.5: Average number of false alerts triggered in each time period............. 139

Table 7.6: Number of transactions in the modified fraud dataset 144

xvi

Table 7.7: Probability that an attack action triggers each type of alert 146

Table A.1: Attack success rate of impersonation attacks on closed-set face recog-
nition systems by the attacker’s system knowledge. Z represents zero
knowledge, T is training set, A is neural architecture, and F represents
full knowledge. ... [193]

Table A.2: Attack success rate of dodging PGD attacks on closed-set face recogni-
tion systems. Here, only the target system’s training data is visible to
the attacker, and we use different surrogate models. [197]

Table A.3: Attack success rate of dodging eyeglass frame attacks on closed-set
face recognition systems. Here, only the target system’s training data
is visible to the attacker, and we use different surrogate models. [197]

Table A.4: Attack success rate of dodging sticker attacks on closed-set face recog-
nition systems. Here, only the target system’s training data is visible
to the attacker, and we use different surrogate models..................... [197]

Table A.5: Attack success rate of dodging face mask attacks on closed-set face
recognition systems. Here, only the target system’s training data is
visible to the attacker, and we use different surrogate models. [198]

Table A.6: Attack success rate of dodging attacks on open-set face recognition
systems by the universality of adversarial examples. Here, N represents
the batch size of face images that share a universal perturbation. [198]

Table B.1: Number of samples in each class of the Segment-6 dataset. [202]

Table B.2: Number of samples in each class of the STL-10 dataset. [202]

Table B.3: Number of samples in each class of the ImageNet-10 dataset. [203]

Table B.4: Robustness of RS against `∞ dual-perturbation attacks. [216]

Table B.5: Robustness of RS against `2 dual-perturbation attacks on Segment-6. [216]

Table B.6: Robustness of RS against `∞ dual-perturbation attacks under different
numbers of noise-corrupted copies at prediction time. [217]

xvii

Acknowledgments

First and foremost, I am extremely grateful to my advisor, Prof. Yevgeniy Vorobeychik, for

his invaluable advice, patience, and continuous support during my PhD study. His immense

knowledge and plentiful experience have encouraged me in all the time of my academic

research and daily life. The work presented in this dissertation would not have been possible

without him. I wish I could be mentored by him a little longer, but it is time to begin my

new adventure and to become an independent researcher.

I also want to thank my committee members, Professor Bruno Sinopoli, Professor Ning Zhang,

Professor Ayan Chakrabarti, and Professor Sanmay Das. Without fruitful discussions with

them, I will not be able to develop all these wonderful ideas and solve challenging problems.

I want to express my appreciation to NEC Labs America for their fantastic research intern

program. Special thanks go to Dr. Zhengzhang Chen and Dr. Haifeng Chen, who were

my mentors during my summer internship in 2021, for offering me countless support on my

research projects.

I would also like to thank all my labmates and friends, Bo Li, Haifeng Zhang, Sweta Panda,

Jian Lou, Ayan Mukhopadhyay, Sixie Yu, Kai Zhou, Chen Hajaj, Jinghan Yang, Rajagopal

Venkatesaramani, Tong Wu, Minzhe Guo, Joss Wang, Andrew Estornell, and Chao Yan, for

their generous support and encouragement.

xviii

Finally, I would like to thank my family for their unconditional support and love during these

years, particularly to my wife, Pei Tung, who has been a great companion, and who has been

with me through the highs and the lows in the past years.

Liang Tong

Washington University in Saint Louis

May 2021

xix

I dedicate this work to Lord, my wife, and my parents.

xx

ABSTRACT OF THE DISSERTATION

Towards Deploying Robust Machine Learning Systems

by

Liang Tong

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2021

Professor Yevgeniy Vorobeychik, Chair

Machine learning (ML) has come to be widely used in a broad array of settings, including

important security applications such as network intrusion, fraud, and malware detection, as

well as other high-stakes settings, such as autonomous driving. A general approach is to

extract a set of features, or numerical attributes, of entities in question, collect a training

data set of labeled examples (for example, indicating which instances are malicious and which

are benign), learn a model which labels previously unseen instances presented in terms of

their extracted features, and then investigate alerts raised by instances predicted as malicious.

Despite the striking success of ML in security applications, security issues emerge from the full

pipeline of ML-based detection systems. First, ML models are often susceptible to adversarial

examples, in which an adversary makes changes to the input (such as malware) to avoid being

detected. Second, using detection systems in practice is dealing with an overwhelming number

of alerts that are triggered by normal behavior (the so-called false positives), obscuring alerts

resulting from actual malicious activities. Third, adversaries can target a broad array of

ML-based detection systems to maximize impact, which is often ignored by individual ML

system designers.

In this thesis, I focus on studying the security problems of deploying robust machine learning

systems in adversarial settings. To conduct systematic research on this topic, my study

xxi

is based on four components. First, I study the problem of systematizing adversarial

evaluation. Concretely, I propose a fine-grained robustness evaluation framework for face

recognition systems. Second, I investigate robust machine learning against decision-time

attacks. Specifically, I propose a framework for validating models of ML evasion attacks,

and evaluate the efficacy of conventional robust machine learning models against realizable

attacks in PDF malware detection. My work shows that the key to robustness is the

conserved features, and I propose a systematic algorithm to identify these. Additionally, I

study robustness against non-salient adversarial examples in image classification and propose

cognitive modeling of suspiciousness of adversarial examples. Third, I study the robust

alert prioritization problem—often a necessary step in the detection pipeline. I propose a

novel approach for computing a policy for prioritizing alerts using adversarial reinforcement

learning. Last, I investigate robust decentralized learning, and I develop a game-theoretic

model for robust linear regression involving multiple learners and a single adversary.

xxii

Chapter 1

Introduction

1.1 Motivation and Challenges

Machine learning (ML) has come to be widely used in a broad array of settings, including

important security applications such as network intrusion, fraud, and malware detection, as

well as other high-stakes settings, such as autonomous driving. A general approach is to

extract a set of features, or numerical attributes, of entities in question, collect a training

data set of labeled examples (for example, indicating which instances are malicious and which

are benign), learn a model which labels previously unseen instances presented in terms of

their extracted features, and then investigate alerts raised by instances predicted as malicious.

Success of ML is particularly striking: in malware detection, ML-based static detection of

malicious entities can achieve 99% accuracy [102, 103] while in traffic sign classification the

accuracy exceeds 91% [25].

1

Nevertheless, the learning systems can potentially be subverted by adversarial manipulations,

which exposes applications that use machine learning techniques to a new class of vulnerabili-

ties. This challenge, in turn, motivates our proposed research of designing robust machine

learning systems in practice. We elaborate on the challenging issues from the following three

aspects.

Vulnerability to Adversarial Examples. Recent research has shown that machine learn-

ing approaches, and especially classifier learning, are susceptible to adversarial examples.

That is, a classifier can be fooled by adding small perturbations to the original examples. A

fundamental reason for such vulnerabilities is that classification learning algorithms generally

assume that the distribution of training and test (or production) data is similar. This as-

sumption is violated in security applications, where malicious entities correspond to attackers

who can, and do, take deliberate action to evade defensive measures. For example, in the case

of malware detection, an adversary can modify malware code so that the resulting malware

is categorized as benign by ML, but still successfully executes the malicious payload [103,

126]. An even a broader class of adversarial examples features attacks that manipulate an

object, such as a human face, so that face recognition pipeline misclassifies he/she as another

person [97].

Overwhelming Number of Alerts. One of the core problems in security is detection

of malicious behavior, with examples including detection of malicious software, emails,

websites, and network traffic. There is a vast literature on machine-learning based detection

approaches [11, 76, 101]. Despite best efforts, however, false positives are inevitable. Moreover,

one cannot, in general, reduce the rate of false alarms without missing some real attacks as a

result. Under the pressure of practical considerations such as liability and accountability, these

systems are often configured to produce a large number of alerts in order to be sufficiently

sensitive to capture most attacks. As a consequence, cybersecurity professionals are routinely

2

inundated with alerts and must sift through these overwhelmingly uninteresting logs to

identify alerts that should be prioritized for closer inspection.

A considerable literature has emerged attempting to reduce the number of false alerts without

significantly affecting the ability to detect malicious behavior [42, 48, 93]. Most of these

attempt to add meta-reasoning on top of detection systems that capture broader system state,

combining related alerts, escalating priority based on correlated observations, or using alert

correlation to dismiss false alarms [114]. Nevertheless, despite significant advances, there are

typically still vastly more alerts than time to investigate them. With this state of affairs, alert

prioritization approaches have emerged, but rely predominantly on predefined heuristics, such

as sorting alerts by suspiciousness score or by potential associated risk [2]. However, any policy

that deterministically orders alerts potentially opens the door for determined attackers who

can simply choose attacks that are rarely investigated, thereby evading detection. Therefore,

how to balance the fundamental trade-off between false alert and attack detection rate forms

another obstacle for robust machine learning systems deployed in practice.

Decentralization of ML Systems. Increasing use of machine learning in adversarial

settings has motivated a series of efforts investigating the extent to which learning approaches

can be subverted by malicious parties. An important class of such attacks involves adversaries

changing their behaviors, or features of the environment, to effect an incorrect prediction.

Most previous efforts study this problem as an interaction between a single learner and a

single attacker [10, 20, 59, 132]. However, in reality attackers often target a broad array of

potential victim organizations. For example, they craft generic spam templates and generic

malware, and then disseminate these widely to maximize impact. The resulting ecology of

attack targets reflects not a single learner, but many such learners, all making autonomous

decisions about how to detect malicious content, although these decisions often rely on similar

3

training datasets. However, such setting is typically ignored when ML systems are deployed,

which forms the third challenge towards robust machine learning system in practice.

1.2 Overview of The Thesis

In response to the challenges described above, I make several contributions to designing robust

machine learning systems under adversarial environments in this thesis. My contributions fall

into four directions: systematizing adversarial evaluation (Chapter 3), robust machine learning

against adversarial examples (Chapter 4, 5, and 6), robust alert prioritization (Chapter 7),

and robust decentralized learning (Chapter 8).

The remainder of this thesis is organized as follows. In Chapter 2, I present the background

knowledge and related work of this thesis. Chapter 3 presents a framework for fine-grained

robustness evaluation of face recognition systems, which enables to assess different levels of

robustness under various adversarial circumstances. Chapter 4, 5, and 6 focus on adversarial

defense against decision-time attacks. Specifically, I first present a general framework for

validating the efficacy of conventional robust ML against real attacks in Chapter 4, and

show that robust ML systems can fail to defend against realizable attacks in the context

of PDF malware detection. In Chapter 5, I present a refinement of robust ML by utilizing

conserved features and show that augmenting robust ML with such features can significantly

improve performance. Afterward, I investigate robustness against non-salient adversarial

examples in image classification in Chapter 6, and propose a simple formalization of an

important aspect of what makes adversarial perturbations unsuspicious based on the notion

of cognitive salience. Chapter 7 focuses on deciding which of a large number of alerts to

choose for further investigation—often a necessary step in the detection pipeline. In this

chapter, I present a novel game-theoretic model and principled computational approach for

4

robust alert prioritization. Chapter 8 investigates robust decentralized learning, in which I

present a game-theoretic approach for adversarial regression involving multiple learners and

a single attacker. Chapter 9 concludes and discusses potential future directions.

5

Chapter 2

Background and Related Work

2.1 Machine Learning in Security

2.1.1 Malware Detection

In the (supervised) machine learning literature, it is common to consider the problem

abstractly. We are given a training dataset D = {(xi, yi)}, where xi ∈ X ⊆ Rn are numeric

feature vectors in some feature space X and yi ∈ L are labels in a label space L. Each

data point (or example) in D is assumed to be generated i.i.d. according to some unknown

distribution P. We are also given a hypothesis (model) space, H, and our goal is to identify

(learn) a good model hθ ∈ H parameterized by θ in the sense that it yields a small expected

error on new examples drawn from P. In practice, since P is unknown, one typically aims to

find hθ ∈ H which (approximately) minimizes empirical error on training data D.

In malware detection—as in others—one is not given numerical features; instead, we start

with a collection of entities, such as executables, along with associated labels (we assume

6

Feature
Vector j

Gallery
Image

Test
Image

Same Label?

Neural
Networks

Identity: j

Test
Image

Test
Image

Most
similar?

Similarity?

Gallery

Feature
Vectors

Feature
VectorClassifier

Identity

Neural
Networks

Training
Set

Classifier

Identity: i

Training
Set

Feature
Extractor

Neural
Networks

Training
Set

Feature
Extractor

Neural
Networks

Training
Set

Feature
 Vector i

Closed-Set Face Recognit ion Open-Set Face Recognit ion

Fa
ce

 I
d

ie
n

ti
fi

ca
ti

o
n

Test
Image

Fa
ce

 V
e

ri
fi

ca
to

in

Gallery
Image

Figure 2.1: Closed-set and open-set face recognition systems.

henceforth that these are available, as we focus here on supervised learning problems). We

must then design a collection of feature extractors, where each feature extractor computes a

numerical value of a corresponding feature from an input entity. For example, we extract a

“size” feature by computing the size of an executable. Applying feature extractors to each

entity in our dataset, and adding associated object labels, allow us to generate a dataset D

to fit the conventional ML framework.

Generally, the label space is binary: either a file is benign (which we can code as −1), or

malicious (which we can code as +1). In addition, several prior efforts presented techniques

for defining feature extractors (commonly known simply as features) for PDF malware

detection [102, 103]. Applying such feature extractors to a PDF file dataset transforms this

dataset into one comprised of numerical feature vectors and associated binary labels. The

goal is to predict whether previously unseen PDFs (simulated by holding out a portion of our

dataset as test data) are correctly labeled as malicious or benign.

7

2.1.2 Face Recognition

In computer vision tasks such as face recognition, the raw feature extractor can be a camera

that captures entities and translate these into images with pixels in the digital space. The

images are subsequently fed into deep convolutional neural networks (CNNs) to extract higher

level features such as shapes and edges. Generally, deep face recognition systems aim to solve

the following two tasks: 1) Face identification, which returns the predicted identity of a test

face image; 2) Face verification, which indicates whether a test face image (also called probe

face image) and the face image stored in the gallery belong to the same identity. Based on

whether all testing identities are predefined in the training set, face recognition systems can

be further categorized into closed-set systems and open-set systems [65], as illustrated in

Fig. 2.1.

In closed-set face recognition tasks, all the testing samples’ identities are enrolled in the

training set. Specifically, a face identification task is equivalent to a multi-class classification

problem by using the standard softmax loss function in the training phase [105, 106, 109].

And a face verification task is a natural extension of face identification by first performing the

classification twice (one for the test image and the other for the gallery) and then comparing

the predicted identities to see if they are identical.

In contrast, there are usually no overlaps between identities in the training and testing set

for open-set tasks. In this setting, a face verification task is essentially a metric learning

problem, which aims to maximize intra-class distance and minimize inter-class distance under

a chosen metric space by two steps [22, 65, 66, 88, 95, 120]. First, we train a feature extractor

that maps a face image into a discriminative feature space by using a carefully designed

loss function; Then, we measure the distance between feature vectors of the test and gallery

face images to see if it is above a verification threshold. As an extension of face verification,

8

the face identification task requires additional steps to compare the distances between the

feature vectors of the test image and each gallery image, and then choose the gallery’s identity

corresponding to the shortest distance.

2.2 Decision-Time Attacks on Machine Learning Systems

Recent studies have shown that ML-based techniques are often susceptible to adversarial

examples, in which an adversary makes changes to the input of a machine learning model in

order to cause an incorrect prediction at the decision time. Based on the space in which such

attacks are performed, decision-time attacks can be further categorized into realizable attacks

and feature-space attacks, as detailed below.

2.2.1 Realizable Attacks

Realizable attacks are attacks that entail modifying the actual object in order to fool a machine

learning model that subsequently takes its digital representation as input. An early realizable

attack on machine learning was devised by Fogla et al. [27, 28], who developed an attack on

anomaly-based intrusion detection systems. Šrndic and Laskov [103] present a case study of

an evasion attack on a state-of-the-art PDF malware classifier, PDFRate. Xu et al. [126]

propose EvadeML, a fully realizable attack on PDF malware classifiers which generates evasion

instances by using genetic programming to modify PDF source directly, using a sandbox

to ensure that malicious functionality is preserved. Grosse et al. [34] develop a method

for generating evasion attacks against a deep learning-based Android malware classifier,

using a gradient-based approach which is also a form of iterative improvement heuristics.

This particular attack can be viewed as realizable, even though it wasn’t implemented and

evaluated in actual malware, since the attack space is significantly restricted to only add

9

features that do not interfere with others already present. Similarly, MalGAN, an evasion

attack based on generative adversarial networks developed by Hu and Tan [46], only adds

features from benign to malicious malware, and we treat it as a realizable attack (since it’s

not difficult to implement). Additionally, several recent approaches attempt to generate

adversarial examples against computer vision systems in physical space, such as adding

stickers to a stop sign to cause misclassification [25], or wearing printed glass frames to fool

face recognition [97].

Next, we introduce realizable attacks on two representative domains, PDF malware detection

and face recognition, respectively.

Realizable Attacks on PDF Malware Detection. In PDF malware detection, abstractly,

one is given a learned model hθ(x) (e.g., a SVM or neural network) which returns a label

y = hθ(x) (e.g., malicious or benign) for an arbitrary feature vector x ∈ X (e.g., extracted

from a PDF file). The attacker additionally starts with an entity e (such as a malicious

PDF file), from which we can extract a feature vector φ(e). The attacker then transforms e

into another entity, e′, with an associated feature vector x′ = φ(e′) so as to accomplish two

goals: first, that hθ(x′) returns an erroneous label (for example in PDF malware detection,

labels e′ as benign based on its extracted features φ(e′)), and second, that e′ preserves the

functionality of the original entity e—which, in our example of PDF malware detection,

entails preserving malicious functionality of e. The realizable attack as just described is

presumed to transform the entity itself, such as the malicious PDF file, albeit accounting for

the effect of such transformation on the extracted features x′ = φ(e′). The process by which

such realizable attacks can be successfully accomplished is quite non-trivial, and typically

warrants independent research contributions (e.g., [126]).

10

Fitness Evaluation

Target Classifier

Sandbox

Max Generations Reached or
Solution Found? StopYes

Population Initialization

Malicious
Seed

Benign
Samples

Selection

No

mutation

Reproduction Process

Figure 2.2: EvadeML [126], a realizable attack on PDF Malware Classifiers.

Figure 2.2 illustrate EvadeML [126], a realizable attack on PDF malware detectors which

allows insertion, deletion, and swapping of objects, and is consequently a stronger attack than

most other realizable attacks in the literature, which typically only allow insertion to ensure

that malicious functionality is preserved. EvadeML assumes that the adversary has black-box

access to the classifier and can only get classification scores of PDF files, and was shown to

effectively evade state-of-the-art PDF malware detectors. It employs genetic programming

(GP) to search the space of possible PDF instances to find ones that evade the classifier while

maintaining malicious features.

Realizable Attacks on Face Recognition. In the context of face recognition, of particular

interest are attacks in the physical world (henceforth, physical attacks). Generally, physical

attacks have three characteristics [122]. First, the attackers directly modify the actual entity

rather than digital features. Second, the attacks can mislead state-of-the-art face recognition

systems. Third, the attacks have low suspiciousness (i.e., by adding objects similar to common

“noise” on a small part of human faces). For example, an attacker can fool a face recognition

system by wearing an adversarial eyeglass frame [97], a standard face accessory in the real

world.

In this dissertation, we focus on the digital representation of physical attacks (henceforth,

physically realizable attacks). Specifically, physically realizable attacks are digital attacks

that can produce adversarial perturbations with low suspiciousness, and these perturbations

11

Figure 2.3: Sticker attack: an example of physically realizable attacks on face recognition
systems. Left: original input image. Middle: adversarial sticker on the face. Right: predicted
identity. In practice, the adversarial stickers can be printed and put on human faces.

can be realized in the physical world by using techniques such as 3-D printing (e.g., Fig. 2.3

illustrates one example of such attacks on face recognition systems). Compared to physical

attacks, physically realizable attacks can evaluate robustness of face recognition systems

more efficiently: on the one hand, realizable attacks allow us to iteratively modify digital

images directly so the evaluation can significantly speedup compared to modifying real-world

objects and then photographing them; on the other hand, robustness to physically realizable

attacks provides the lower bound of robustness to physical attacks, as the former has fewer

constraints and larger solution space.

Formally, physically realizable attacks on face recognition can be performed by solving the

following general form of an optimization problem (e.g., for closed-set identification task as

described above):

arg max
δ

`(hθ(x+Mδ), y) s.t. δ ∈ ∆, (2.1)

where h is the target face recognition model parameterized by θ, ` is the adversary’s utility

function (e.g., the loss function used to train h), x is the original input face image, y is

the associated identity, δ is the adversarial perturbation, and ∆ is the feasible space of the

perturbation. Here, M denotes the mask matrix that constrains the area of perturbation; it

has the same dimension as δ and contains 1s where perturbation is allowed, and 0s where

there is no perturbation.

12

2.2.2 Feature-Space Attack Models

As implementing realiazable attacks requires domain knowledge and considerable amount of

engineering work, it is natural to short-circuit the complexity involved, and work directly in

the feature space, as is conventional in the machine learning literature [4, 7, 13, 20, 33, 69,

130]. Moreover, a series of efforts explore attacks in the context of image classification by

deep neural networks [13, 33, 82, 85, 108]. These approaches commonly generate adversarial

perturbations within a bounded `p norm so that the perturbations are imperceptible, although

Gilmer et al. [30] question the common threat models used in these works.

In this case, the attacker is modeled as starting with a malicious feature vector x (not the

malicious entity e), and directly modifying the features to produce another feature vector

x′ ∈ X, so as to yield erroneous predictions, i.e., y′ = hθ(x
′) (for example, being mislabeled

as benign). Crucially, since we are no longer appealing to original entities, we must abstract

away the notion of preserving (malicious) functionality. This is done through the use of a

cost function, c(x,x′), whereby the attacker is penalized for greater modifications to the

given feature vector x, commonly measured using an `p norm difference between the original

malicious instance and the modified feature vector [7, 58]. We term these the feature-space

attack models.

The problem of identifying an adversarial example in feature space for x can be captured by

the following optimization problem (or its variants):

max
δ∈∆(ε)

L (hθ(x+ δ), y) (2.2)

where L(·) is the loss function used to train the classifier hθ and ∆(ε) is the feasible

perturbation space which is commonly represented as a `p ball: ∆(ε) = {δ : ‖δ‖p ≤ ε}. A

13

number of approaches have been proposed to solve the optimization problem above. For

classifiers with real-valued features, we can use gradient based approaches [7, 71]1. When the

features are binary, the optimization problem in Eq. (2.2) can be solved by using Corrdinate

Greedy (alternatively known as iterative improvement) [58] which optimizes one randomly

chosen coordinate of the feature vector at a time, until a local optimum is reached. To

improve the quality of the resulting solution (considering that L(·) is typically non-concave),

the above process can be repated from several random starting points [58, 71].

2.3 Robust Learning

A large number of approaches have been proposed for defending against adversarial exam-

ples (e.g., [7, 9, 10, 86, 87, 91, 115, 121, 124]). While many have been shown inadequate [4,

13], the four generally effective approaches are: (a) game-theoretic reasoning, (b) robust

optimization (a special case of (a) where the game is zero-sum), (c) adversarial training (an

approach for obtaining approximate (a) or (b) solutions [58, 71, 115]), and (d) randomized

smoothing [16, 57]. Game-theoretic methods in general, and robust optimization in particular,

are not general-purpose, as solving these directly requires special structure, such as a continu-

ous feature space and differentiability [7, 9, 10], and often additional structure of the learning

model, such as linearity [124] or neural network architecture and activation functions [91,

121]. Finally, to date all have used the mathematical feature-space attack model at their core.

Next, we describe two categorizations of defense that have proved both sufficiently scalable and

effective even against adaptive attacks: adversarial training [16, 33, 71, 108] and randomized

smoothing [16, 57].
1Generally, images are preprocessed such that pixels are divided by 255 for computational convenience in

training and testing. Consequently, a feasible pixel value should lie in [0,1] and is treated as real-valued.

14

2.3.1 Adversarial Training

The basic idea of adversarial training is to produce adversarial examples and incorporate

these into the training process. Formally, adversarial training aims to solve the following

robust learning problem:

min
θ

1

|D|
∑
x,y∈D

max
‖δ‖p≤ε

L (hθ(x+ δ), y) (2.3)

where D is the training dataset. In practice, this problem is commonly solved by iteratively

using the following two steps [71]: 1) use any attack to produce adversarial examples in feature

space of the training data; 2) use any optimizer to minimize the loss of those adversarial

examples. It has been shown that adversarial training can significantly boost the adversarial

robustness of a classifier against `p attacks, and it can be scaled to neural networks with

complex architectures. Note that adversarial training is a general approach that can be also

incorporated with realizable attacks. That is, we can first use realizable attacks to produce

adversarial entities, then translate these into feature space, add them to the training data,

and re-train the classifier.

2.3.2 Randomized Smoothing

The second class of methods for robust learning considers adding random perturbations

to inputs at both training and test time. The basic idea is to construct a new smoothed

classifier gθ(·) from a base classifier hθ(·) as follows: first, the base classifier hθ(·) is trained

with Gaussian data augmentation with variance σ2; then, for any input x at test time, the

smoothed classifier gθ(·) returns the class that has the highest probability measure for the

15

base classifier hθ(·) when inputs are perturbed with isotropic Gaussian noise:

gθ(x) = arg max
c
P (hθ(x+ η) = c)

where η ∼ N
(
0, σ2I

) . (2.4)

It has been shown that randomized smoothing can provide certified robustness to adversarial

perturbations for `2-norm-bounded attacks [16, 57].

2.4 Reinforcement Learning

2.4.1 Deep Reinforcement Learning

Reinforcement learning has received significant attention in recent years, which is in large

part due to the emergence of deep reinforcement learning. Deep reinforcement learning

combines classic reinforcement learning approaches, such as Q-learning [119], with deep

neural networks. Classic Q-learning is a model-free reinforcement learning approach, which is

guaranteed to find an optimal policy for any finite Markov decision process [118]. However, to

do so, it needs to learn and store an exact representation of the action-value function, which is

infeasible for a problem with large action or state spaces. Notable early successes combining

reinforcement learning with neural networks include TD-Gammon, a backgammon program

that achieved a level of play that was comparable to top human players in 1992 [110]. More

recently, Mnih et al. introduced the model-free Deep Q-Learning algorithm (DQN), which

achieved human-level performance in playing a number of Atari video games, using purely

visual input from the games [78, 79]. However, the actions spaces in all of these games were

small and discrete. Lillicrap et al. adapted the idea of Deep Q-Learning to continuous action

spaces by introducing an algorithm, called Deep Deterministic Policy Gradient (DDPG) [61].

16

DDPG is a model-free actor-critic algorithm, whose robustness is demonstrated on a variety

of continuous control tasks. [117], A3C [77], Distributional DQN [5], and Noisy DQN [29]),

which had been proposed by the deep reinforcement learning community since the publication

of DQN, across 57 Atari games [40]. Further, they integrated these improvements into a

single agent, called Rainbow, and demonstrated its state-of-the-art performance on common

benchmarks.

2.4.2 Multi-Agent Reinforcement Learning

Single-agent reinforcement learning approaches can train only one agent at a time, which

means that in a multi-agent setting, they must treat other agents as part of the environment.

As a result, they often provide policies that are not robust—especially in a non-cooperative

setting such as ours—since they cannot consider the possibility that other agents respond

by learning and updating their own policies. Multi-agent reinforcement learning approaches

attempt to provide more robust policies by training multiple adaptive agents together.

Littman proposed a framework for multi-agent reinforcement learning that models the

competition between two agents as a zero-sum Markov game [64]. To solve this game, the

author introduced a Q-learning-like algorithm, called minimax-Q, which is guaranteed to

converge to optimal policies for both players. However, the minimax-Q algorithm assumes

that the game is zero-sum (i.e., the player’s rewards are exact opposites of each other) and

every step of the training involves exhaustive searches over the action spaces, which limits

the applicability of the algorithm. A number of follow up efforts have proposed more general

solutions. For example, Hu and Wellman extended Littman’s framework to general-sum

stochastic games [44]. They propose an algorithm that is based on each agent learning

two action-value functions (one for itself and one for its opponent), which is guaranteed to

converge to a Nash equilibrium under certain conditions. To relax some of these conditions,

17

Littman introduced Friend-or-Foe Q-learning, in which each agent is told to treat each other

agent either as a “friend” or as a “foe” [63]. Later, Hu and Wellman proposed the NashQ

algorithm, which generalizes single-agent Q-learning to stochastic games with many agents by

using an equilibrium operator instead of expected utility maximization [45].

While the above approaches have the advantage of providing certain convergence guarantees,

they assume that action-value functions are represented exactly, which is infeasible for

scenarios with large action or state spaces. Deep multi-agent reinforcement-learning provides

a more scalable approach by representing action-value functions using deep neural networks.

For example, Lowe et al. proposed an adaptation of actor-critic reinforcement-learning

methods to multi-agent settings [70]. In the proposed approach, each agent learns a collection

of different sub-policies, and for each episode, each agent randomly selects sub-policy from

this collection. Lanctot et al. introduced an algorithm, called policy-space response oracles,

which maintains a set of policies for each agent, but it does not incorporate actor-critic

methods, and it was evaluated in settings with relatively small discrete action spaces.

2.5 Alert Management and Prioritization

A multitude of research efforts have studied the problem of reducing the number of alerts

without significantly reducing the probability of attack detection [48]. One of the most

common approaches is alert correlation and clustering, which attempt to group related alerts

together, thereby reducing the set of messages that are presented [93]. In distributed systems,

collaborative intrusion detection systems may be deployed, which include several monitoring

components and correlate alerts among the monitors to create a holistic view [114]. Since the

number of alerts may be too high even after correlation, research efforts have also investigated

the prioritization of alerts. For example, Alsubhi et al. introduced a fuzzy-logic based alert

18

management system, called FuzMet, which uses several metrics and fuzzy logic to score and

prioritize alerts [2]. However, these approaches do not consider the possibility of an attacker

adapting to the prioritization.

Prior work has successfully applied game theory to a variety of security problems, ranging from

physical security [3] to network security and privacy [73]. Our proposed work is most closely

related to alert-prioritization games. Laszka et al. introduced GAIN, the first game-theoretic

model for alert prioritization, which they solved with the help of a greedy heuristic [56]. The

performance of this approach is limited by its restrictive assumptions about the defender’s

decision making. In particular, this approach assumes that the defender’s policy is a strict

prioritization that investigates all higher-priority alerts before investigating any lower-priority

ones, and the prioritization is chosen before observing the actual number of alerts. Moreover,

the model considers only a single time slot, which further limits its usefulness. Yan et al.

improved upon GAIN by allowing the defender to specify a maximum budget that may be

spent on each alert types, thereby relaxing the strict prioritization of GAIN [127]. However,

this improved approach, which we denoted RIO in our experiments, still assumes that the

prioritization is chosen before observing any alerts and considers only a single time slot.

Schlenker et al. introduced a similar model, called Cyber-alert Allocation Game, which further

simplifies the problem by assuming that the number of false alerts is fixed and known by

both parties in advance [94].

19

Part I

Systematizing Adversarial Evaluation of

Machine Learning Systems

20

Chapter 3

Fine-Grained Robustness Evaluation for

Face Recognition Systems

The previous chapter has shown that machine learning techniques are often susceptible

to adversarial examples in different domains and settings. Therefore, there are pressing

needs for methods to systematically and comprehensively evaluate robustness of machine

learning systems in adversarial settings, which in turn provide insights for designing robust

machine learning models. In this chapter, we present FaceSec, a framework for fine-grained

robustness evaluation of face recognition systems. FaceSec evaluation is performed along

four dimensions of adversarial modeling: the nature of perturbation (e.g., pixel-level or face

accessories), the attacker’s system knowledge (about training data and learning architecture),

goals (dodging or impersonation), and capability (tailored to individual inputs or across

sets of these). We use FaceSec to study five face recognition systems in both closed-set

and open-set settings, and to evaluate the state-of-the-art approach for defending against

physically realizable attacks on these. We find that accurate knowledge of neural architecture

is significantly more important than knowledge of the training data in black-box attacks.

21

Moreover, we observe that open-set face recognition systems are more vulnerable than closed-

set systems under different types of attacks. The efficacy of attacks for other threat model

variations, however, appears highly dependent on both the nature of perturbation and the

neural network architecture. For example, attacks that involve adversarial face masks are

usually more potent, even against adversarially trained models, and the ArcFace architecture

tends to be more robust than the others.

3.1 Overview

Face recognition has received much attention [50, 65, 88, 95, 116, 120] in recent years.

Empowered by deep convolutional neural networks (CNNs), it has become widely used

in various areas, including security-sensitive applications, such as airport check-in, online

financial transactions, and mobile device login.

Despite its widespread success in computer vision applications, recent studies have found that

deep face recognition models are vulnerable to adversarial examples in both digital space [24,

71, 128] and physical space [97]. The former directly modifies an input face image by adding

imperceptible perturbations to mislead face recognition (henceforth, digital attacks). The

latter is characterized by adding adversarial perturbations that can be realized on physical

objects (e.g., wearing an adversarial eyeglass frame [97]), which are subsequently captured by

a camera and then fed into a face recognition model to fool prediction (henceforth, physically

realizable attacks). As such, the aforementioned domains, especially critical domains such

as security or finance, are subjected to risks of opening the backdoor for the attackers. For

example, in face recognition supported financial/banking services, an illegal user may bypass

biometric verification and steal money from victims’ accounts. Therefore, there exists a vital

need for methods that can comprehensively and systematically evaluate the robustness of

22

face recognition systems in adversarial settings, which in turn can shed light on the design of

robust models for downstream face recognition tasks.

The main challenges of comprehensive evaluation of the robustness of face recognition lie in

dealing with the diversity of face recognition systems and adversarial environments. First,

different face recognition systems consist of various key components (e.g., training data and

neural architecture); such diversity results in different performance and robustness. To enable

comprehensive and systematic evaluations, it is crucial to assess the robustness of every

individual or a combination of face recognition components in adversarial settings. Second,

adversarial example attacks can vary by the nature of perturbations (e.g., pixel-level or

physical space), an attacker’s goal, knowledge, and capability. For a given face recognition

system, its robustness against a specific type of attack may not generalize to other kinds [122].

In spite of recent advances in adversarial attacks [24, 97, 128] that demonstrate the vulnera-

bility of face recognition systems, most existing methods fail to address the aforementioned

challenges due to the following reasons. First, current efforts appeal to either white-box

attacks or black-box attacks to obtain a lower bound or upper bound of robustness. These

bounds indicate the vulnerability of face recognition systems in adversarial settings but lack

the understanding of how each component of face recognition contributes to such vulnerability.

Second, while most existing approaches focus on a specific type of attack (e.g., digital attacks

that incur imperceptible noise [24, 128]), they fail to explore the different levels of robustness

in response to various attacks (e.g., physically realizable attacks).

To bridge this gap, we propose FaceSec, a fine-grained robustness evaluation framework for

face recognition systems. FaceSec incorporates four dimensions in evaluation: the nature of

adversarial perturbations (pixel-level or face accessories), the attacker’s accurate knowledge

about the target face recognition system (training data and neural architecture), goals

23

(dodging or impersonation), and capability (individual or universal attacks). Specifically, we

implement both digital and physically realizable attacks in FaceSec. We leverage the PGD

attack [71], the state-of-the-art digital attack paradigm, and the eyeglass frame attack [97]

as the representative of physically realizable attacks. Additionally, we propose two novel

physically realizable attacks: one involves pixel-level adversarial stickers on human faces,

and the other adds color grids on face masks. Moreover, to facilitate universal attacks that

produce image-agnostic perturbations, we propose a systematic approach that works on top

of the attack paradigms described above. We perform a comprehensive evaluation on five

publicly available face recognition systems in various settings to demonstrate the efficacy of

FaceSec.

3.2 Methodology

In this section, we introduce FaceSec for fine-grained robustness evaluation of face recognition

systems. Our goal is twofold: 1) identify vulnerability/robustness of each essential component

that comprises a face recognition system, and 2) assess robustness in a variety of adversarial

settings. Fig. 3.1 illustrates an overview of FaceSec. Let S = f(h;D) be a face recognition

system with a neural architecture h that is trained on a training set D by an algorithm f

(e.g., stochastic gradient descent), FaceSec evaluates the robustness of S via a quadruplet:

Robustness = Evaluate(S,< P ,K ,G ,C >), (3.1)

where < P,K,G,C > represents an attacker who tries to produce adversarial examples to

fool S. P is the perturbation type, such as perturbations produced by pixel-level digital

attacks and physically realizable attacks. K denotes the attacker’s knowledge on the target

system S, i.e., the information about which sub-components of S are leaked to the attacker.

24

S: target system
to be evaluated

K: attacker’s knowledge about S
§ Zero knowledge
§ Training set
§ Neural architecture
§ Full knowledge

C: attacker’s capability
§ Individual attack for each image
§ Batch-based universal attack

P: perturbation type
§ Digital
§ Pixel-level physically realizable
§ Grid-level physically realizable

G: attacker’s goal
§ Dodging
§ Impersonation

Robustness = Evaluate(S, <P, K, G, C>)

Figure 3.1: An overview of FaceSec.

G is the goal of the attacker, such as the circumvention of detection and the misrecognition

as a target identity. C represents the attacker’s capability. For example, an attacker can

either individually perturb each input face image, or produce universal perturbations for

images batch-wise. Next, we will describe each element of FaceSec in details.

3.2.1 Perturbation Type (P)

In FaceSec, we consider three categories of attacks with different perturbation types: digital

attack, pixel-level physically realizable attack, and grid-level physically realizable attack, as

shown in Fig. 3.2.

Digital Attack. Digital attack produces small perturbations on the entire input face image.

We use the `∞-norm version of the PGD attack [71] as the representative of this category.

Pixel-level Physically Realizable Attack. This category of attack features pixel-level

perturbations that can be realized in the physical world (e.g., by printing them on glossy

photo papers). In this case, the attacker adds large pixel-level perturbations on a small area

25

Face Mask
Eyeglass
Frame StickerPGD

Digital
Pixel-level

Physically Realizable
Gr id-level

Physically Realizable

Figure 3.2: Perturbation types in FaceSec.

Table 3.1: Optimization formulations of grid-level face mask attacks.

Target System Attacker’s Goal Formulation
Closed-set Dodging maxδ `(S(x+M · T (δ)), y)
Closed-set Impersonation minδ `(S(x+M · T (δ)), yt)
Open-set Dodging maxδ d(S(x+M · T (δ)), S(x∗))
Open-set Impersonation minδ d(S(x+M · T (δ)), S(x∗t))

of the input image (e.g., face accessories). In FaceSec, we use two attacks of this category:

eyeglass frame attack [97] and sticker attack. The former allows large perturbations within an

eyeglass frame, and it can successfully mislead VGG-based face recognition systems [88]. We

propose the latter to produce pixel-level perturbations that are added on less important face

areas than the eyeglass frame, i.e., the two cheeks and forehead of human faces, as illustrated

in Fig. 2.3 and 3.2. Typically, the stickers are rectangular occlusions, which cover a total of

about 20% area of an input face image.

Grid-level Physically Realizable Attack. In practice, pixel-level perturbations are not

printable on face accessories made of coarse materials, such as face masks using cloths and

non-woven fabrics. To address this issue, we propose the grid-level physically realizable face

mask attack, which adds a color grid on face masks, as shown in Fig. 3.2.

26

1

3

3 5

2 4 6

1’ 3’ 5’

2’
4’ 6’

Interpolation

Perspective Transformation

Transformation

Figure 3.3: Transformations for the grid-level face mask attack.

Formulation. The optimization formulations of the proposed grid-level face mask attacks

under different settings are presented in Table 3.1. Here, S is the target face recognition

model, x is the original input face image, and δ is the adversarial perturbation. M denotes

the mask matrix that constrains the area of perturbation; it has the same dimension as δ

and contains 1s where perturbation is allowed, and 0s where there is no perturbation. For

closed-set systems, ` denotes the softmax cross-entropy loss function, y is the identity of x,

and yt is the target identity for impersonation attacks. For open-set settings, d is the cosine

distance (using one to minus cosine similarity), x∗ is the gallery image of x, and x∗t is the

target gallery image for impersonation. T represents a set of transformations that convert

the color matrix δ to a face mask with a color grid in digital space. Specifically, T contains

two transformations: interpolation transformation and perspective transformation, which are

detailed below.

27

Interpolation Transformation. The interpolation transform starts from a a× b color matrix δ

and uses the following two steps to scale δ into a face image, as illustrated in Fig 3.3: First,

it resizes the color matrix from a× b to a rectangle δ′ with c× d pixels, so as to reflect the

size of a face mask in a face image in digital space while preserving the layout of the color

grids represented by δ. Specifically, in FaceSec, each input face image has 224× 224 pixels.

Let (a, b) = (8, 16) and (c, d) = (80, 160). Then, we put the face mask δ′ into a background

image, such that the pixels in the rectangular area have the same value with δ′, and those

outside the face mask area have values of 0s.

Perspective Transformation. Once the rectangle δ′ is embedded into a background image,

we use a 2-D alignment that relies on the perspective transformation by the following steps.

First, we divide δ′ into a left half part δ′L and a right half part δ′R; each is rectangular with

four corners. Then, we apply the perspective transformation to project each part to be with

aligned coordinates, such that the new coordinates align with the position when a face mask

is put on a human face, as shown in Fig 3.3. Let δ′′L and δ′′R be the left and right part of the

aligned face mask, the perspective transformation aims to find a 3× 3 matrix Nk(k ∈ {L,R})

for each part such that the coordinates satisfy

δ
′′

k (x, y) = δ′k(u, v), k ∈ {L,R},

where

u =
Nk(1, 1)x+Nk(1, 2)y +Nk(1, 3)

Nk(3, 1)x+Nk(3, 2)y +Nk(3, 3)
,

and

v =
Nk(2, 1)x+Nk(2, 2)y +Nk(2, 3)

Nk(3, 1)x+Nk(3, 2)y +Nk(3, 3)
.

Finally, we merge δ′′L and δ′′R to obtain the aligned grid-level face mask.

28

Algorithm 1 Computing adversarial face mask.
Input: Target system S;

Input face image x and its identity y;
The number of iterations T ;
Step size α;
Momentum parameter µ.

Output: The color grid matrix of adversarial face mask δT .
1: Initialize the color grid δ0 := 0, momentum g0 := 0;
2: Use interpolation and perspective transformations to convert δ0: δ

′′
0 := T (δ0);

3: for each t ∈ [0, T − 1] do

4: gt+1 := µ · gt +
∇δt

`(S(x+M ·δ′′t),y)

||`(S(x+M ·δ′′t),y)||1
;

5: δt+1 := δt + α · sign(gt+1);
6: δ

′′
t+1 := T (δt+1);

7: Clip δ′′t+1 such that pixel values of x+M · δ′′t+1 are in [0, 255/255];
8: end for
9: return δT .

Computing Adversarial Face Masks. The algorithm for computing the color grid for adversarial

face mask attack is outlined in Algorithm 1. Here, we use the dodging attack on closed-set

systems as an example. The algorithms for other settings are similar. Note that δT is the

resulting color grid, and the corresponding adversarial example is x+M · T (δT).

3.2.2 Attacker’s System Knowledge (K)

The key components of a face recognition system S are the training set D and neural architec-

ture h. It is natural to ask how do these two components contribute to the robustness against

adversarial attacks. From the attackers’ perspective, we propose several evaluation scenarios

in FaceSec, which represent adversarial attacks performed under different knowledge levels

on D and h.

Zero Knowledge. Both D and h are invisible to the attacker, i.e., K = ∅. This is the

weakest adversarial setting, as no critical information of S is leaked. Thus, it provides an

29

upper bound for robustness evaluation on S. In this scenario, the attacks are referred to as

black-box attacks, where the attacker needs no internal details of S to compromise it.

There are two general ways towards black-box attacks, query-based attack [14, 83] and transfer-

based attack [84]. We employ the latter because the former attack requires a large number of

online probes to repeatedly estimate the loss gradients of S on adversarial examples, which is

less practical than fully offline attacks when access to prediction decisions is unavailable. The

latter method is built upon the transferability of adversarial examples [23, 84]. Specifically,

an attacker first collects a sufficient of training samples and builds a surrogate training set

D′. Then, a surrogate system S ′ is constructed by training a surrogate neural architecture

h′ on D′ for the same task as S, i.e., S ′ = f(h′;D′). Afterward, the attacker obtains a set

of adversarial examples by performing white-box attacks on the surrogate system S ′, which

constitutes the transferable adversarial examples for evaluating the robustness of S.

Training Set. This scenario enables the assessment of the robustness of the training set

of S in adversarial settings. Here, only the training set D is visible to the attacker, i.e.,

K = {D}. Without knowing h, an attacker constructs a surrogate system S ′ by training

a surrogate neural architecture h′ on D, i.e., S ′ = f(h′;D). Then, the attacker performs

the transfer-based attack aforementioned on S ′ and evaluates S by using the transferred

adversarial examples.

Neural Architecture. Similarly, the attacker may only know the neural architecture h of

S but has no access to the training set D, i.e., K = {h}. This enables us to evaluate the

robustness of the neural architecture h of S. Without knowing D, the attacker can build its

surrogate system S ′ = f(h;D′) and conduct the transfer-based attack to evaluate S.

Full Knowledge. In the worst case, the attacker can have an accurate knowledge of both

the training set D and neural architecture h (i.e., K = {D, h}). Thus, it provides a lower

30

bound for robustness evaluation on S. In this scenario, the attacker can fully reproduce S in

an offline setting and then performs white-box attacks on S.

The evaluation method described above is based on the assumption that the adversarial

examples in response to a surrogate system S ′ can always mislead the target system S.

However, there is no theoretical guarantee, and recent studies show that some transferred

adversarial examples can only fool the target system S with a low success rate [67].

To boost the transferability of adversarial examples produced on the surrogate system, we

leverage two techniques: momentum-based attack [23] and ensemble-based attack [23, 67].

First, inspired by the momentum-based attack, we integrate the momentum term into the

iterative process of the white-box attacks on the surrogate system S ′ to stabilize the update

directions and avoid the local optima. Thus, the resulting adversarial examples are more

transferable. Second, when the neural architecture h of the target system S is unavailable,

we construct the surrogate system S ′ using an ensemble of models with different neural

architectures rather than a single model, i.e., h′ = {h′i}ki=1, where {h′i}ki=1 is an ensemble of k

models. Specifically, we aggregate the output logits of hi(i ≤ k) in a similar way to [23]. The

rationale behind this is that if an adversarial example can fool multiple models, it is more

likely to mislead other models.

3.2.3 Attacker’s Goal (G)

In addition to the attacker’s system knowledge about S, adversarial attacks can differ in

specific goals. In FaceSec, we are interested in the following two types of attacks with

different goals:

Dodging/Non-targeted. In a dodging attack, an attacker aims to have his/her face

misidentified as another arbitrary face. e.g., the attacker can be a terrorist who wants to

31

Table 3.2: Optimization formulations by the attacker’s goal.

Target System Attacker’s Goal Formulation
Closed-set Dodging maxδ `(S(x+Mδ), y), s.t. ||δ||p ≤ ε
Closed-set Impersonation minδ `(S(x+Mδ), yt), s.t. ||δ||p ≤ ε
Open-set Dodging maxδ d(S(x+Mδ), S(x∗)), s.t. ||δ||p ≤ ε
Open-set Impersonation minδ d(S(x+Mδ), S(x∗t)), s.t. ||δ||p ≤ ε

bypass a face recognition system for biometric security checking. As the dodging attack

has no specific identity as which it aims to predict an input face image, it is also called the

non-targeted attack.

Impersonation/Targeted. In an impersonation/targeted attack, an attacker seeks to

produce an adversarial example that is misrecognized as a target identity. For example, the

attacker may try to camouflage his/her face to be identified as an authorized user of a laptop,

which uses face recognition for authentication.

In FaceSec, we formulate the dodging attack and impersonation attack as constrained

optimization problems, corresponding to different face recognition systems and the attacker’s

goals, as shown in Table 3.2. Here, ` denotes the softmax cross-entropy loss used in closed-

set systems, d represents the distance metric for open-set systems (e.g., the cosine distance

obtained using one to minus cosine similarity), (x, y) is the input face image and the associated

identity, δ is the adversarial perturbation, S represents a face recognition system which is

built on either a single model or an ensemble of models with different neural architectures,

M denotes the mask matrix that constrains the area of perturbation (similar to Eq. (2.2)), ε

is the `p-norm bound of δ. For closed-set systems, we use yt to represent the target identity

of impersonation attacks. For open-set systems, we use x∗ to denote the gallery face image

that belongs to the identity as x, and x∗t as the gallery image for the target identity of

impersonation.

32

Note that the formulations listed in Table 3.2 work for both digital attacks and physically

realizable attacks: For the former, we use a small value of ε and let M be an all-one matrix

to ensure imperceptible perturbations on the entire image. For the latter, we use a large ε

and let M to constrain δ in a small area of x.

3.2.4 Attacker’s Capability (C)

In practice, even when the attackers share the same system knowledge and goal, their

capabilities can still be different due to the time and/or budget constraints, such as the

budget for printing adversarial eyeglass frames [97]. Thus, in FaceSec, we consider two types

of attacks corresponding to different attacker’s capabilities: individual attack and universal

attack.

Individual Attack. The attacker has a strong capability with enough time and budget to

produce a specific perturbation for each input face image. In this case, the optimization

formulations are the same as those shown in Table 3.2.

Universal Attack. The attacker has a time/budget constraint such that he/she is only able

to generate a face-agnostic perturbation that fools a face recognition system on a batch of

face images instead of every input.

One common way to compute a universal perturbation is to sequentially find the minimum

perturbation of each data point in the batch and then aggregate these perturbations [81].

However, this method requires orders of magnitude running time: it processes only one image

at each iteration, so a large number of iterations are needed to obtain a satisfactory universal

perturbation. Moreover, it only focuses on digital attacks and cannot be generalized to

physically realizable attacks, which seek large perturbations in a restricted area rather than

the minimum perturbations.

33

Algorithm 2 Finding universal perturbations.
Input: Target system S;

Input face image batch {xi, yi}Ni=1;
The number of iterations T ;
Step size α;
Momentum parameter µ.

Output: The universal perturbation δT for {xi, yi}Ni=1.
1: Initialize δ0 := 0, g0 := 0;
2: for each t ∈ [0, T − 1] do
3: for each i ∈ [1, N] do
4: `i,t := `(S(xi +M · δt), yi);
5: end for
6: `t = min{`i,t}Ni=1;
7: gt+1 := µ · gt +

∇δt
`t

||`t||1 ;
8: δt+1 := δt + α · sign(gt+1);
9: Clip δt+1 such that pixel values of x+M · δt+1 are in [0, 255/255];
10: end for
11: return δT .

To address these issues, we formulate the universal attack as a maxmin optimization as

follows (using the dodging attack on closed-set systems as an example):

max
δ

min{`(S(xi +Mδ), yi)}Ni=1, s.t. ||δ||p ≤ ε, (3.2)

where {xi, yi}Ni=1 is a batch of input images that share the universal perturbation δ. Compared

to [81], our approach has several advantages: First, we can significantly improve the efficiency

by processing images batchwise. Second, our formulation can explicitly control the universality

of the perturbation by setting different values of N . Third, our method can be generalized to

both digital attacks and physically realizable attacks. Details of our algorithm for solving

the optimization problem in Eq. (3.2) is presented in Algorithm 2. Here, we use the dodging

attack on closed-set systems as an example. The algorithms for other settings are similar.

Note that in practice, the pseudocode from Line 3 to Line 6 in Algorithm 2 can be executed

in a paralleled manner by using GPUs. Therefore, compared to traditional methods that

34

Table 3.3: Optimization formulations of universal dodging attacks.

Target System Perturbation Type Formulation
Closed-set Pixel-level maxδ min{`(S(xi +Mδ), yi)}Ni=1, s.t. ||δ||p ≤ ε
Closed-set Grid-level maxδ min{`(S(xi +M · T (δ)), yi)}Ni=1

Open-set Pixel-level maxδ min{d(S(xi +Mδ), S(x∗i))}Ni=1, s.t. ||δ||p ≤ ε
Open-set Grid-level maxδ min{d(S(xi +M · T (δ)), S(x∗i))}Ni=1

iterate every data point to find a universal perturbation [81], our approach can achieve a

significant speedup.

The formulations of universal perturbations in different settings are presented in Table 3.3. In

FaceSec, we mainly focus on universal dodging attacks. Effective universal impersonation

attack is still an open problem, and we leave it for future work.

3.3 Experimental Results

In this section, we evaluate a variety of face recognition systems using FaceSec on both

closed-set and open-set tasks under different adversarial settings.

3.3.1 Experimental Setup

Datasets. For closed-set systems, we use a subset of the VGGFace2 dataset [12]. Specifically,

we select 100 classes, each of which has 181 face images. For open-set systems, we employ the

VGGFace2, MS-Celeb-1M [36], CASIA-WebFace [129] datasets for training surrogate models,

and the LFW dataset [47] for testing.

Neural Architectures. The face recognition systems with five different neural networks

are evaluated in our experiments: VGGFace [88], InceptionResNet [107], IResNet18 [60],

IResNet50 [60], and IResNet101 [60].

35

Table 3.4: Open-set face recognition systems in our experiments.

Target Model Training Set Neural Architecture Loss
VGGFace [88] VGGFace [88] VGGFace [88] Triplet [88]
FaceNet [26] CASIA-WebFace [129] InceptionResNet [107] Triplet [95]
ArcFace18 [90] MS-Celeb-1M [36] IResNet18 [60] ArcFace [22]
ArcFace50 [90] MS-Celeb-1M [36] IResNet50 [60] ArcFace [22]
ArcFace101 [90] MS-Celeb-1M [36] IResNet101 [60] ArcFace [22]

Attack Models. We perform both digital attacks and physically realizable attacks in our

evaluation. For digital attacks, we choose the PGD attack [71] as the representative. For

physical realizable attacks, we use the three attacks introduced in Section 3.2: the eyeglass

frame attack, the sticker attacks, and the grid-level face mask attacks.

Defense Baselines. Two defense strategies are used in our experiments. (1) Rectangular

occlusion attacks (henceforth, DOA) [122]: the state-of-the-art adversarially robust training

scheme for face recognition; (2) Randomized Smoothing (henceforth, RS) [16]: the provably

robust classification against `2 attacks. The defense strategies are evaluated when each face

recognition system is trained on non-adversarial data.

Evaluation Metric. We use attack success rate = 1 - accuracy as the evaluation metric.

Specifically, a higher attack success rate indicates that a face recognition system is more

fragile in adversarial settings, while a lower rate shows higher robustness against adversarial

attacks.

Implementation. For open-set face recognition, we directly applied five publicly available

pre-trained face recognition models using different datasets and neural architectures, as

summarized in Table 3.4. At prediction stage, we used 100 photos randomly selected from

frontal images in the LFW dataset [47], each of which is aligned by using MTCNN [131] and

corresponds to one identity. And we used another 100 photos of the same identities as the

test gallery. We computed the cosine similarity between the feature vectors of the test and

36

Face MaskEyeglass Frame Sticker

Figure 3.4: Mask matrices for physically realizable attacks in FaceSec.

gallery photos. If the score is above a threshold corresponding to a False Acceptance Rate of

0.001, then the test photo is predicted to have the same identity as the gallery photo.

For closed-set face recognition, we randomly split each class of the VGGFace2 subset into

three parts: 150 for training, 30 for validation, and 1 for testing. To train closed-set models,

we used standard transfer learning with the open-set models listed in Table 3.4. Specifically,

we initialized each closed-set model with the corresponding open-set model, and then added a

final fully connected layer, which contains 100 neurons. Unless otherwise specified, each model

was trained for 60 epochs with a training batch size of 64. We used the Adam optimizer [53]

with an initial learning rate of 0.0001, then dropped the learning rate by 0.1 at the 20th and

35th epochs.

For each physically realizable attack in FaceSec, we used 255/255 as the `∞ norm bound

for perturbations allowed, and ran each attack for 200 iterations. For the PGD attack [71],

we used an `∞ bound 8/255 and 40 iterations. The dimension of the color grid for face mask

attacks is set to 16 × 8. The mask matrices that constrain the areas of perturbations for

physically realizable attacks are visualized in Fig. 3.4.

37

Table 3.5: Attack success rate of dodging attacks on closed-set face recognition systems by
the attacker’s system knowledge. Z represents zero knowledge, T is training set, A is neural
architecture, and F represents full knowledge.

Target System Attack Type Attacker’s System Knowledge
Z T A F

VGGFace

PGD 0.40 0.51 0.93 0.94
Eyeglass Frame 0.23 0.28 0.70 0.99

Sticker 0.05 0.06 0.47 0.98
Face Mask 0.26 0.32 0.63 1.00

FaceNet

PGD 0.83 0.83 1.00 1.00
Eyeglass Frame 0.13 0.16 0.90 1.00

Sticker 0.01 0.01 0.92 1.00
Face Mask 0.30 0.42 0.83 1.00

ArcFace18

PGD 0.87 0.92 0.97 1.00
Eyeglass Frame 0.06 0.06 0.44 1.00

Sticker 0.01 0.01 0.37 1.00
Face Mask 0.27 0.33 0.71 1.00

ArcFace50

PGD 0.87 0.90 0.81 0.99
Eyeglass Frame 0.09 0.12 0.44 0.99

Sticker 0.00 0.01 0.14 0.94
Face Mask 0.29 0.36 0.67 0.99

ArcFace101

PGD 0.81 0.78 0.86 0.96
Eyeglass Frame 0.03 0.03 0.26 0.98

Sticker 0.04 0.04 0.08 0.95
Face Mask 0.26 0.36 0.54 0.99

3.3.2 Robustness of Face Recognition Components

We begin by using FaceSec to assess the robustness of face recognition components in

various adversarial settings. For a given target face recognition system S and a perturbation

type P , we evaluate the training set D and neural architecture h of S with the four evaluation

scenarios presented in Section 3.2.2. Specifically, when h is invisible to the attacker, we

construct the surrogate system S ′ by ensembling the models built on the other four neural

architectures shown in Table 3.4. In the scenarios where the attacker has no access to D,

we build the surrogate training set D′ with another VGGFace2 subset that has the same

38

Table 3.6: Attack success rate of dodging attacks on open-set face recognition systems with
zero knowledge.

Target Model Attack Type
PGD Sticker Eyeglass Frame Face Mask

VGGFace 0.26 0.56 0.79 0.67
FaceNet 0.55 0.13 0.54 0.62

classes as D in closed-set settings, and use the other four training sets listed in Table 3.4

for open-set tasks. We present the experimental results for dodging attacks on closed-set

face recognition systems in Table 3.5, and the results for zero-knowledge dodging attacks on

open-set VGGFace and FaceNet in Table 3.6. The other results can be found in Appendix

A.1. Additionally, we evaluate the efficacy of using momentum and ensemble methods to

improve transferability of adversarial examples, which is detailed in Appendix A.2.

It can be seen from Table 3.5 that: the neural architecture is significantly more fragile than

the training set in most adversarial settings. For example, when only the neural architecture

is exposed to the attacker, the sticker attack has a high success rate of 0.92 on FaceNet. In

contrast, when the attacker only knows the training set, the attack success rate significantly

drops to 0.01. In addition, by comparing each row of Table 3.5 that corresponds to the

same target system, we observe that digital attacks (PGD) are considerably more potent than

their physically realizable counterparts on closed-set systems, while grid-level perturbations on

face masks are noticeably more effective than pixel-level physically realizable perturbations

(i.e., the eyeglass frame attack and the sticker attack). Moreover, by comparing the zero

knowledge attacks in Table 3.5 and 3.6, we find that open-set face recognition systems are

more vulnerable than closed-set systems such that nearly all perturbation types of attacks

(even the black-box sticker attack that often fails in closed-set) tend to be more likely to

successfully transfer across different open-set systems (i.e., these are more susceptible to

black-box attacks), which should raise more concerns about their security.

39

Table 3.7: Attack success rate of dodging attacks on closed-set face recognition systems by
the universality of adversarial examples. Here, N represents the batch size of face images
that share a universal perturbation.

Target System Attack Type Attacker’s Capability
N=1 N=5 N=10 N=20

VGGFace

PGD 0.94 0.86 0.31 0.15
Eyeglass Frame 0.99 0.91 0.52 0.23

Sticker 0.98 0.66 0.34 0.09
Face Mask 1.00 1.00 0.88 0.56

FaceNet

PGD 1.00 1.00 0.80 0.21
Eyeglass Frame 1.00 1.00 1.00 0.62

Sticker 1.00 1.00 0.98 0.61
Face Mask 1.00 1.00 1.00 0.91

ArcFace18

PGD 1.00 1.00 0.64 0.08
Eyeglass Frame 1.00 0.96 0.44 0.08

Sticker 1.00 0.56 0.09 0.00
Face Mask 0.99 0.92 0.90 0.67

ArcFace50

PGD 1.00 0.80 0.37 0.05
Eyeglass Frame 0.99 0.81 0.38 0.07

Sticker 0.91 0.28 0.06 0.00
Face Mask 0.99 0.98 0.81 0.72

ArcFace101

PGD 0.96 0.91 0.24 0.03
Eyeglass Frame 0.98 0.71 0.19 0.02

Sticker 0.93 0.15 0.03 0.00
Face Mask 0.99 0.92 0.90 0.67

3.3.3 Robustness Under Universal Attacks

Next, we use FaceSec to evaluate the robustness of face recognition systems with various

extents of adversarial universality by setting the parameter N in Eq. (3.2) to different values.

For a given N , we split the testing set into mini-batches of size N , and produce a specific

perturbation for each batch. Note that when N = 1, a universal attack is reduced to an

individual attack. Table 3.7 shows the experimental results for universal dodging attacks on

closed-set systems. The other results are presented in Appendix A.3.

40

VGGFace FaceNet ArcFace18 ArcFace50 Arcface101
Target System (DOA retraining)

0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Eyeglass Frame Sticker Face Mask

Figure 3.5: Attack success rate of dodging physically realizable attacks on closed-set systems
with DOA retraining.

Our first observation is that face recognition systems are significantly more vulnerable to the

universal face masks than other types of universal perturbations. Under a large extent of

universality (e.g., when N = 20), face mask attacks remain > 0.5 success rates. Particularly

noteworthy is the universal face mask attacks on FaceNet, which can achieve a rate as high

as 0.91. In contrast, other universal attacks can have relatively low success rates (e.g., 0.08

for eyeglass frame attack on ArcFace18). The second observation is that the robustness of a

face recognition system against different types of universal perturbations is highly dependent

on its neural architecture. For example, the ArcFace101 architecture is more robust than the

others in most settings, while FaceNet tends to be the most fragile one.

3.3.4 Is “Robust” Face Recognition Really Robust?

While numerous approaches have been proposed for making deep neural networks more robust

to adversarial examples, only a few [122] focus on defending against physically realizable

41

attacks on face recognition systems. These defense approaches have achieved good performance

for certain types of realizable attacks and neural architectures, but their effectiveness for

other types of attacks and face recognition systems remains unknown. In this section, we

apply FaceSec to evaluate the state-of-the-art defense paradigms. Specifically, we first use

DOA [122], a method that defends closed-set VGGFace against eyeglass frame attacks [97]

to re-train each closed-set system. We then evaluate the refined systems using the three

physically realizable attacks included in FaceSec. Fig. 3.5 shows the experimental results

for dodging attacks.

Our first observation is that the state-of-the-art defense approach, DOA, fails to defend against

the grid-level perturbations on face masks for most neural architectures. Specifically, face mask

attacks can achieve > 0.7 success rates on four out of the five face recognition systems refined

by DOA. Moreover, we observe that adversarial robustness against one type of perturbation

can not be generalized to other types. For example, while VGGface-DOA exhibits a relatively

high level of robustness (more than a 70% accuracy) against pixel-level perturbations (i.e.,

stickers and eyeglass frames), it is very vulnerable to grid-level perturbations (i.e., face masks).

In contrast, using DOA on FaceNet can successfully defend face mask perturbations with the

attack success rate significantly dropping from 1.0 to 0.24, but it’s considerably less effective

against eyeglass frames and stickers. In summary, these results show that the effectiveness of

defense is highly dependent on the nature of perturbation and neural architectures, which in

turn, indicates that it is critical to consider different types of attacks and neural architectures

when evaluating a defense method for face recognition systems.

42

3.4 Conclusion

In this chapter, we present FaceSec, a fine-grained robustness evaluation framework for

face recognition systems. FaceSec incorporates four evaluation dimensions and can work

on both face identification and verification of open-set and closed-set systems. To our best

knowledge, FaceSec is the first-of-its-kind platform that supports evaluating the risks of

different components of face recognition systems from multiple dimensions and under various

adversarial settings. The comprehensive and systematic evaluations on five state-of-the-

art face recognition systems demonstrate that FaceSec can greatly help understand the

robustness of the systems against both digital and physically realizable attacks. We envision

that FaceSec can serve as a useful framework to advance future research of adversarial

learning on face recognition.

43

Part II

Robust Learning against Decision-Time

Attacks

44

Chapter 4

How Robust Is Robust ML?

Previous chapters have shown that ML models are often susceptible to decision-time attacks2,

in which an adversary makes changes to the input (such as malware) in order to avoid being

detected. A conventional approach to evaluate ML robustness to such attacks, as well as to

design robust ML, is by considering simplified feature-space models of attacks, where the

attacker changes ML features directly to effect evasion, while minimizing or constraining the

magnitude of this change. In this chapter, We investigate the effectiveness of this approach to

designing robust ML in the face of attacks that can be realized in actual malware (realizable

attacks). We first propose a general methodological framework for evaluating the validity of

mathematical models of ML evasion attacks. We then demonstrate that in the context of

structure-based PDF malware detection, such techniques appear to have limited effectiveness,

but they are effective with content-based detectors. In other words, the widely used feature

space attack models can be inadequate as a means for ML defense.
2In binary classification, such attacks are also called evasion attacks. We make these two terms inter-

changeable in this chapter.

45

4.1 Overview

As shown in previous studies, ML-based techniques are often susceptible to adversarial

examples, an important special case of which are decision-time attacks, or evasion attacks in

the case of binary classification. In a prototypical case of a decision-time attack, an adversary

modifies malware code so that the resulting malware is categorized as benign by ML, but still

successfully executes the malicious payload [28, 34, 72, 103, 126]. An even broader class of

adversarial examples features attacks that manipulate an object, such as a stop sign, so that

a computer vision pipeline misclassifies it as another object (such as a speed limit sign) [25,

33, 97].

In response, a host of methods emerged for making ML robust to adversarial examples, the

most potent of which are those based on game-theoretic approaches, robust optimization

(including certified robustness), and adversarial retraining [10, 33, 58, 71, 91, 121, 124, 132].

A fundamental ingredient in all of these are feature-space models of attacks. Specifically, the

attacker is assumed to directly modify values of features, with either a constraint or a penalty

on the aggregate feature change measured in terms of an lp norm.

Such feature-space models of attacks are clearly abstractions of reality. First, arbitrary

modifications of feature values may not be realizable. For example, adding a benign object to

a malicious PDF (with no other changes) necessarily increases its size, and so setting the

associated feature to 1 (from 0) and simultaneously reducing file size may not be practically

feasible. Second, the key goal for an adversary is to create a target malicious effect, such

as to execute a malicious payload. Limiting feature modifications to be small in some lp

norm clearly need not capture this: one can insert many no-ops (resulting in a large change

according to an lp norm) with no impact on malicious functionality, and conversely, minimal

changes (such as removing a Javascript tag) may break malicious functionality. Nevertheless,

46

an implicit assumption in robust ML approaches is that the feature-space models capture

reality sufficiently to yield ML models that are robust even to realizable attacks. The goal of

our work in this chapter is to evaluate the validity of this implicit assumption in the context

of PDF malware detection.

Our first contribution is a general methodological framework for evaluating the validity of

mathematical models of ML evasion attacks. At the core of the framework is a conceptual

model of defense and attack based on a Stackelberg game [10], where we assume to have

an attack oracle that can be queried to obtain an attack for a given defense. The second

ingredient is iterative adversarial retraining that can make use of an arbitrary learning

algorithm and automated attack, enabling general applicability of the framework, and a fair

comparison in validation (since the defensive approach is the same whether the attack is

realizable or in feature space). The third feature of the framework is an evaluation measure

which quantifies ML robustness by pitting ML against a realizable attack, which must avoid

being detected and preserve malicious functionality as validated using a sandbox [19, 35].

Our second contribution is to evaluate feature-space evasion attack models in the context of

PDF malware detection, using EvadeML as a realizable attack [126]. Specifically, we consider

four ML-based approaches for PDF malware detection: two based on features that capture

PDF file structure (SL2013 [102] and Hidost [104]), and two based on PDF file content (two

Mimicus variants of PDFRate [100, 103]). In all cases, we show that successful defense

against a given realizable attack is feasible (by retraining with this attack). In the case of

structure-based detectors, we demonstrate that adversarial retraining in the feature space

does not lead to adequate robustness against realizable attacks. In contrast, adversarial

retraining in the feature space is effective in the case of content-based detectors. In other

words, the nature of the feature space can matter a great deal.

47

defense
q

attack

Find best defense q

Figure 4.1: A conceptual model of how an attack (either realizable or using a feature-space
model) can be used in improving ML security. Let defense be parameterized by θ, and an
attack reacting to the particular defense θ (e.g., attacker evades the learned ML model h(x)).
We wish to choose the best defense θ against such a reactive attacker, as captured by our
attack model.

4.2 A Framework for Validating Models of ML Evasion

Attacks

Our main goal is to evaluate whether robust ML approaches that make use of feature-space

models of evasion attacks are, indeed, robust against real—realizable—attacks.

We start with a conceptual model of defense and attack illustrated in Figure 4.1. We can

view this conceptual model as a Stackelberg game between ML (“defender”), who first chooses

a defense θ (in our case, the learned model h(x)) and the attacker, who finds an optimal

attack that reacts to the particular defense θ. An attack model captures how the attacker

changes behavior in response to the defense θ. The defender’s goal is to choose the best

defense θ against such a reactive attacker, as captured by the attack model. Indeed, this

is a common way to model the adversarial evasion problem in prior literature [10, 59, 115].

This model has two useful features. First, the attack is treated as an oracle in the sense

that it returns an attack for an arbitrary defense θ. This allows us, in principle, to design

a defense against an arbitrary evasion attack, making no distinction between feature-space

attack models and realizable attacks. Second, we can separately consider defense against a

48

specific attack (for example, a feature-space attack), and evaluation, which can use another

attack (e.g., a realizable attack).

To be more precise, let O(h;D) be an arbitrary attack which returns evasions given a dataset

D and a classifier h, and let u(h;O(h;D)) be the measure that the defender wishes to optimize

(for example, accuracy on data after evasions). Then defense against the attack O(h;D)

amounts to solving the following optimization problem:

max
h

u(h;O(h;D)). (4.1)

In practice, we need a means for approximately solving the optimization problem in Eq. ((4.1))

for an arbitrary attack. To this end, we make use of iterative retraining, an approach previously

proposed for hardening classifiers against evasion attacks [51, 58]. In particular, we use a

variant of iterative retraining with provable guarantees [58], which is outlined as follows:

1. Start with the initial classifier.

2. Execute the evasion attack for each malicious instance in training data to generate a

new feature vector.

3. Add all new data points to training data (removing any duplicates), and retrain the

classifier.

4. Terminate after either a fixed number of iterations, or when no new evasions can be

added.

Now, we describe our approach to validation.

49

Consider a model of an evasion attack, Õ(h;D) (e.g., a feature-space attack model), which is a

proxy for a “real” (realizable) attack, O(h;D); note that each attack evades a given ML model

h. We first find the defense against Õ using the retraining procedure above; let the resulting

robust classifier be h̃. Next, we evaluate h̃ by running the target realizable attack O(h̃;D).

Finally, we create a baseline h∗, which is a robust classifier against a target realizable attack

O. We then evaluate how well h̃ performs, compared to h∗, against the target attack. For

example, if we find that h̃ is ineffective against the target attack, we say that Õ is a poor

attack proxy, whereas if it remains robust, we view Õ as a good proxy for the target attack

O.

Putting everything together, we propose the following framework for validating the effective-

ness of ML evasion models. Choose the ML algorithm that we wish to make robust. Next,

consider a model of an evasion attack, Õ(h) (e.g., a feature-space attack model), which is a

proxy for a “real” (realizable) attack, O(h); note that each attack evades a given ML model h.

Let u(h;O) be a measure of robustness of an ML model h against the realizable attack. Now,

1. Perform iterative retraining, using the model, Õ(h); let h̃ be the resulting “hardened”

ML model;

2. Perform iterative retraining, using the realizable attack, O(h); let h∗ be the ML model

hardened against this attack;

3. The effectiveness of Õ(h) relative to O(h) (for which it is a proxy) is max{u(h∗;O)−

u(h̃;O), 0}.

Note that we generally expect that ML hardened using the realizable attack will be more

robust against this attack than ML hardened using some other proxy (e.g., feature-space)

attack. However, this is not always the case, and we do not require it; we simply use u(h∗;O)

50

as a fair baseline, and claim the model to be effective as long as it’s nearly as good as this

baseline, and certainly when it’s better.

In the sequel, we use our framework to evaluate robustness of conventional feature-space

approaches for hardening ML when they are confronted with a realizable attack.

4.3 Experimental Methodology

We use malicious PDF detection as a case study to investigate robustness of ML hardened

using feature-space models of evasion attacks. We now describe our experimental methodology.

We start with some background on PDF structure, and proceed to describe the specific ML-

based detectors, evasion attacks (both realizable, and feature-space), datasets, and evaluation

metrics used in our experiments.

4.3.1 PDF Document Structure

The Portable Document Format (PDF) is an open standard format used to present content

and layout on different platforms. A PDF file structure consists of four parts: header, body,

cross-reference table (CRT), and trailer. The header contains information such as the magic

number and format version. The body is the most important element of a PDF file, which

comprises multiple PDF objects that constitute the content of the file. These objects can be

one of the eight basic types: Boolean, Numeric, String, Null, Name, Array, Dictionary, and

Stream. They can be referenced from other objects via indirect references. There are other

types of objects, such as JavaScript which contains executable JavaScript code. The CRT

indexes objects in the body, while the trailer points to the CRT.

51

Table 4.1: Target classifiers.

Classifier Feature type Number of features
SL2013 Binary 6,087
Hidost Binary 961

PDFRate-R Real-valued 135
PDFRate-B Binary 135

The relations between objects with cross-references can be described as a directed graph

that presents their logical structure by using edges representing reference relations and nodes

representing different objects. As an object can be referred to by its child node, the resulting

logical structure is a directed cyclic graph. To eliminate the redundant references, the logical

structure can be reduced to a structural tree with the breadth-first search procedure.

4.3.2 Target Classifiers

Several PDF malware classifiers have been proposed [19, 100, 102, 104]. For our study, we

selected SL2013 [102], Hidost [104] and two variants of PDFRate [100] (termed PDFRate-R

and PDFRate-B respectively), displayed in Table 4.1. SL2013 and its revised version, Hidost,

are structure-based PDF classifiers, which use the logical structure of a PDF document to

construct and extract features used in detecting malicious PDFs. PDFRate, on the other

hand, is a content-based classifier, which constructs features based on metadata and content

information in the PDF file to distinguish benign and malicious instances. Evasion attacks on

both SL2013 and PDFRate classifiers, particularly of the realizable kind, have been developed

in recent literature [102, 103, 104, 126], providing a natural evaluation framework for our

purposes.

Structure-Based Classifiers. In this chapter, we use SL2013 and Hidost as the represen-

tatives of structure-based classifiers.

52

SL2013: SL2013 is a well-documented and open-source machine learning system using

Support Vector Machines (SVM) with a radial basis function (RBF) kernel, and was shown

to have state-of-the-art performance [102]. It employs structural properties of PDF files to

discriminate between malicious and benign PDFs. Specifically, SL2013 uses the presence

of particular structural paths as binary features to present PDF files in feature space. A

structural path of an object is a sequence of edges in the reduced (tree) logical structure,

starting from the catalog dictionary and ending at this object. Therefore, the structural path

reveals the shortest reference path to an object. SL2013 uses 6,087 most common structural

paths among 658,763 PDF files as a uniform set for classification.

Hidost: Hidost is an updated version of SL2013. It inherits all the characteristics of SL2013

and employs structural path consolidation (SPC), a technique to consolidate features which

have the same or similar semantic meaning in a PDF. As the semantically equivalent structural

paths are merged, Hidost reduces polymorphic paths and still preserves the semantics of

logical structure, so as to improve evasion-robustness of SL2013 [104].

In our work, we employ the 961 features identified in the latest version of Hidost.

PDFRate: A Content-Based Classifier. The original PDFRate classifier uses a random

forest algorithm, and employs PDF metadata and content features. The metadata features

include the size of a file, author name, and creation date, while content-based features include

position and counts of specific keywords. All features were manually defined by Smutz and

Stavrou [100].

PDFRate uses a total of 202 features, but only 135 of these are publicly documented [99].

Consequently, in our work we employ the Mimicus implementation of PDFRate which was

shown to be a close approximation [103]. Mimicus trained a surrogate SVM classifier with

the documented 135 features and the same dataset as PDFRate, using both the SVM and

53

random forest classifiers, both performing comparably. We use the SVM implementation

in our experiments to enable more direct comparisons with the structure-based classifiers

that also use SVM. An important aspect of Mimicus is feature standardization on extracted

data points performed by subtracting the mean of the feature value and dividing by standard

deviation, transforming all features to be real-valued and zero-mean (henceforth, PDFRate-R).

This surrogate was shown to have ∼ 99% accuracy on the test data [100]. In addition, we

construct a binarized variant of PDFRate (henceforth, PDFRate-B), where each feature is

transformed into a binary feature by assigning 0 whenever the feature value is 0, and assigning

1 whenever the feature value is non-zero.

4.3.3 Realizable Evasion Attacks

The primary realizable attack in our study is EvadeML [126], which allows insertion, deletion,

and swapping of objects, and is consequently a stronger attack than most other realizable

attacks in the literature, which typically only allow insertion to ensure that malicious

functionality is preserved. EvadeML assumes that the adversary has black-box access to the

classifier and can only get classification scores of PDF files, and was shown to effectively evade

both SL2013 and PDFRate [126]. It employs genetic programming (GP) to search the space

of possible PDF instances to find ones that evade the classifier while maintaining malicious

features. First, an initial population is produced by randomly manipulating a malicious PDF

repeatedly. The manipulation is either a deletion, an insertion, or a swap operation on PDF

objects. A deletion operation deletes a target object from the seed malicious PDF file. An

insertion operation inserts an object from external benign PDF files (provided exogenously)

after the target object. A swap operation replaces the entry of the target object with that

of another object in the external benign PDFs. After the population is initialized, each

variant is assessed by the Cuckoo sandbox [35] and the target classifier to evaluate its fitness.

54

The sandbox is used to determine if a variant preserves malicious behavior, such as API or

network anomalies. The target classifier provides a classification score for each variant. If

the score is above a threshold, then the variant is classified as malicious. Otherwise, it is

classified as benign. If a variant is classified as benign but displays malicious behavior, or

if GP reaches the maximum number of generations, then GP terminates with the variant

achieving the best fitness score and the corresponding mutation trace is stored in a pool for

future population initialization. Otherwise, a subset of the population is selected for the next

generation based on their fitness evaluation. Afterward, the variants selected are randomly

manipulated to generate the next generation of the population. EvadeML was used to evade

SL2013 in [126]. The reported results show that it can automatically find evasive variants for

all 500 selected malicious test seeds.

In this chapter, we set the GP parameters in EvadeML as the same as in the experiments

by Xu et al. [126]. The population size in each generation is 48. The maximum number of

generations is 20. The mutation rate for each PDF object is 0.1. The mutation traces that

lead to successful evasion and promising variants are stored and applied in our experiments.

The fitness threshold of a classifier is 0. We use the same external benign PDF files as Xu et

al. [126] to provide ingredients for insertion and swap operations.

4.3.4 Feature-Space Evasion Model

In typical realizable attacks, including EvadeML, a consideration is not merely to move to

the benign side of the classifier decision boundary, but to appear as benign as possible. This

naturally translates into the following multi-objective optimization in feature space:

minimize
x

Q(x) = f(x) + λc(xM , x), (4.2)

55

where f(x) is the score of a feature vector x, with the actual classifier (such as SVM) g(x) =

sgn(f(x)), xM the malicious seed, x an evasion instance, c(xM , x) the cost of transforming

xM into x, and λ a parameter which determines the feature transformation cost. We use l2

norm distance between xM and x as the cost function: c(xM , x) =
∑

i |xi − xM,i|2. Since in

most of our experiments features are binary, the choice of l2 norm (as opposed to another lp

norm) is not critical.

As the optimization problem in Eq. (4.2) is non-convex and variables are binary in three of

the four cases we consider, we use a stochastic local search method designed for combinatorial

search domains, Coordinate Greedy (alternatively known as iterative improvement), to

compute a local optimum (the binary nature of the features is why we eschew gradient-

based approaches) [43, 58]. In this method, we optimize one randomly chosen coordinate

of the feature vector at a time, until a local optimum is reached. To improve the quality

of the resulting solution, we repeat this process from several random starting points. This

approach has been shown to be extremely effective for computing evasion instances in binary

domains [58].

4.3.5 Datasets

The dataset we use is from the Contagio Archive3. We use 5,586 malicious and 4,476

benign PDF files for training, and another 5,276 malicious and 4,459 benign files as the

non-adversarial test dataset. The training and test datasets also contain 500 seeds selected

by Xu et al. [126], with 400 in the training data and 100 in the test dataset. These seeds

are filtered from 10,980 PDF malware samples and are suitable for evaluation since they are

detected with reliable malware signatures by the Cuckoo sandbox [35]. We randomly select
3Available at the following URL: http://contagiodump.blogspot.com/2013/03/

16800-clean-and-11960-malicious-files.html.

56

http://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html
http://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html

40 seeds from the training data as the retraining seeds and use the 100 seeds in the test data

as the test seeds.

4.3.6 Implementation of Iterative Adversarial Retraining

We made a small modification to the general iterative retraining approach described in

Section 4.2 when it uses EvadeML as the realizable attack O(h;D). Specifically, we used only

40 malicious seeds to EvadeML to generate evasions, to reduce running time and make the

experiment more consistent with realistic settings where a large proportion of malicious data

is not adapting to the classifier. As shown below, this set of 40 instances was sufficient to

generate a model robust to evasions from held out 100 malicious seed PDFs.

We distribute both retraining and adversarial test tasks on two servers (Intel(R) Xeon(R)

CPU E5-2695 v4 @ 2.10GHz, 18 cores and 64 GB memory, running Ubuntu 16.04). For

retraining using EvadeML as the attack, we assign each server 20 seeds; each seed is processed

by EvadeML to produce the adversarial evasion instances. We then add the 40 examples

obtained to the training data, retrain the classifier, and then split the seeds between the two

servers in the next iteration. In the evaluation phase, we assign each server 50 seeds from the

100 test instances, and each seed is further used to evade the classifier by using EvadeML.

4.3.7 Evaluation Metrics

We evaluate performance in two ways: 1) evaluation of evasion robustness (which is central

to our specific inquiry), and 2) traditional evaluation. To evaluate robustness, we compute

the proportion of 100 malicious test seed PDFs for which EvadeML successfully evades the

classifier; this is our metric of evasion robustness, evaluated with respect to EvadeML. Thus,

evasion robustness of 0% means that the classifier is successfully evaded in every instance, while

57

evasion robustness of 100% means that evasion fails every time. Our traditional evaluation

metric uses test data of malicious and benign PDFs, where no evasions are attempted. On this

data, we compute the ROC (receiver operating characteristic) curve and the corresponding

AUC (area under the curve).

4.4 Efficacy of Feature-Space Attack Models

We now undertake our first task: evaluation of the effectiveness of robust ML obtained by

using the abstract feature-space models of attack. We compare to a baseline classifier obtained

by retraining with the most potent attack on our menu, EvadeML (which, in addition to

inserting content, as done by other attacks [46, 72, 103], also allows the attacker to delete

and swap PDF objects). We can think of our baseline as assuming that the defender knows

that EvadeML is employed by the attacker, along with its hyperparameters. Throughout this

and next section, we also use EvadeML to evaluate the effectiveness of classifiers hardened

using a feature-space model, in comparison with the above baseline.

4.4.1 Structure-Based PDF Malware Classification

Our first case study uses a state-of-the-art PDF malware classifier which engineers features

based on PDF structure. Indeed, we evaluate two versions of this classifier: an earlier version,

which we call SL2013, and a more recent version, which we call Hidost. The experiments by

Xu et al. [126] demonstrate that SL2013 can be successfully evaded. Since Hidost was a recent

redesign attempting in part to address its vulnerability to mimicry attacks by significantly

reducing the feature space, no data exists on its vulnerability to evasion attacks. Below we

demonstrate that Hidost is also vulnerable to evasion attacks (indeed, more so than SL2013).

58

Original RAR FSR- 1 FSR- 2
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.16

0.96

0.50
0.62

0 0.005 0.01 0.015 0.02
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Original (AUC = 0.9999)
RAR (AUC = 0.9999)
FSR- 1 (AUC = 0.9994)
FSR- 2 (AUC = 0.9947)

Figure 4.2: Evasion robustness under EvadeML test (left) and performance on non-adversarial
data (right) of different classifiers for SL2013.

From the perspective of defense, we show that it is possible to harden both SL2013 and Hidost

against a powerful realizable EvadeML attack by simply retraining with this attack (RAR,

for realizable-attack retraining, henceforth refers to a model hardened using EvadeML). This

serves as a baseline we use to evaluate the efficacy of a retraining defense with a feature-space

attack model (henceforth, FSR for feature-space retraining). We then show that for both

SL2013 and Hidost, FSR significantly underperforms RAR.

In our experiments, we empirically set the RBF parameters for training both SL2013 and

Hidost to C = 12 and γ = 0.0025.

SL2013. We start our case study with SL2013. We first study adversarial retraining with

realizable attacks, we then proceed to evaluate feature-space retraining.

Retraining with a Powerful Realizable Attack First, we replicated the EvadeML attack on

the original SL2013; the classifier achieves only a 16% evasion robustness.4 Next, to create a

baseline, we conduct experiments in which EvadeML is employed to retrain SL2013. The
4This result differs from the experiments in [126] which show a 0% evasion robustness. We found a flaw in

the implementation of feature extraction in EvadeML which causes evaluation to be performed using the
wrong feature vectors. This bug has been fixed in the GitHub version of EvadeML.

59

0 2 4 6 8 10
RAR iterations

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.16

0.53
0.64

0.84
0.94 0.96

0 5 10 15 20
Attack generations

0.92

0.94

0.96

0.98

1.00

Ev
as

io
n

Ro
bu

st
ne

ss

Figure 4.3: Evasion robustness with retraining iterations (left) and generations of the EvadeML
attack test (right).

process terminated after 10 iterations at which point no evasive variants of the 40 retraining

seeds could be generated. We observe (Figure 4.2 (left)) that the retrained classifier (RAR)

obtained by this approach achieves a 96% evasion robustness. Moreover, RAR is essentially

as accurate as the baseline SL2013 on non-adversarial data (Figure 4.2 (right)). Thus, it is

clearly possible to be highly robust to this evasion attack without significantly compromising

effectiveness on data not featuring explicit evasion attacks.

Figure 4.3 (left) shows the gradual improvement of evasion robustness over the 10 retraining

iterations. This plot demonstrates non-trivial effectiveness of EvadeML: the first few iterations

are clearly insufficient, as re-running EvadeML creates many new evasions that cannot be

correctly detected by the classifier. Only after 6 iterations does EvadeML optimization loop

begin to show significant signs of failing. Figure 4.3 (right) shows how increasing the number

of generations in EvadeML attacks affects robustness of the RAR classifier. At this point, we

can see that increasing the capability of the attack has minimal impact.

Feature-Space Retraining. Next, we experimentally evaluate the effectiveness of retraining

with a feature-space model of evasion attacks in obtaining robust ML in the face of the

60

EvadeML realizable attack. We consider the setting with λ = 0.05 and λ = 0.005 in Eq. (4.2)

(henceforth, FSR-λ1 and FSR-λ2).

The robustness results are shown in Figure 4.2 (left). Compared to the SL2013 baseline,

feature-space retraining (FSR) boosts evasion robustness from 16% to 62%. Crucially, the

robustness of the resulting classifier is far below the classifier achieved by RAR. This illustrates

that defense that relies on feature-space models of adversarial examples may not in fact lead

to robustness when it is faced with a real attack.

We again consider performance of FSR classifier on non-adversarial test data (Figure 4.2

(right)). We can see that robustness boosting again does not much degrade performance,

with AUC remaining above 99%. However, we do see a substantial degradation as we move

from λ = 0.05 to 0.005; thus, as we increase adversarial power in the feature-space model,

while we do obtain a slightly more robust model, we incur a nontrivial hit in performance on

non-adversarial data.

Hidost. We now repeat our experiments above with another structure-based classifier,

Hidost. We set the retraining parameter λ = 0.005, which appears to strike a reasonable

balance between robustness and accuracy on non-adversarial data. As before, we first

evaluated the robustness of the original Hidost [104] by EvadeML. The result shows a 2%

robustness—remarkably, significantly worse than SL2013.

Evasion robustness of Hidost, as well as improvements achieved by RAR and FSR, are shown

in Figure 4.4 (left), and the results are consistent with our observations for SL2013. First, by

retraining with the realizable attack, evasion robustness is boosted to 98%, a rather dramatic

improvement, and clear demonstration that successful defense is possible. In contrast, FSR

achieves a 70% evasion robustness, a significant boost over the original Hidost, to be sure,

but far below the evasion robustness of RAR.

61

Original RAR FSR
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.02

0.98

0.70

0 0.005 0.01 0.015 0.02
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Original (area = 0.9997)
RAR (area = 0.9997)
FSR (area = 0.9930)

Figure 4.4: Evasion robustness under EvadeML test (left) and performance on non-adversarial
data (right) of different classifiers for Hidost.

Evaluating these classifiers on non-adversarial test data in terms of ROC curves (Figure 4.4

(right)), we can observe that RAR achieves comparable accuracy (> 99.9% AUC) with the

original Hidost classifier on non-adversarial data, and provides even better True Positive Rate

(TPR) when False Positive Rate (FPR) is close to zero. On the other hand, FSR achieves

> 99% AUC, but yields a significant degradation of TPR when FPR< 0.01.

4.4.2 Content-Based PDF Malware Classification

Our next case study concerns another two PDF malware classifiers which use features based

on PDF file content, rather than logical structure. We trained both real-valued and binarized

PDFRate (henceforth, PDFRate-R and PDFRate-B) on the same dataset as SL2013 and

Hidost, and achieved > 99.9% AUC for both classifiers on test data. In our experiments,

we empirically set the SVM RBF parameters for training to C = 10 and γ = 0.01. In our

evaluation of ML robustness, we again set the feature-space model parameter λ to be 0.005.

PDFRate with Real-Valued Features. We begin with the variant of PDFRate—PDFRate-

R—which has been constructed in previous evaluations and shown comparable in performance

to the original implementation [103]. We again begin by replicating the EvadeML evasion

62

Original RAR FSR
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.02

0.96 1.00

0 0.005 0.01 0.015 0.02
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Original (AUC = 0.9998)
RAR (AUC = 1.0000)
FSR (AUC = 0.9895)

Figure 4.5: Evasion robustness under EvadeML test (left) and performance on non-adversarial
data (right) of different classifiers for PDFRate-R.

robustness evaluation of the baseline classifier. As expected, we find the classifier quite

vulnerable, with only 2% evasion robustness.

Next, we retrain PDFRate-R with EvadeML for 10 iterations (RAR baseline), and perform

feature-space retraining using the conventional feature space model above. Our results are

shown in Figure 4.5 (left). Observe that while RAR indeed achieves a highly robust classifier

(96% robustness), FSR actually performs even better, with 100% robustness.

Comparing RAR and FSR performance on non-adversarial data (Figure 4.5 (right)), we

observe that the high robustness of FSR does incur a cost: while RAR remains exceptionally

effective (>99.99% AUC), FSR achieves AUC slightly lower than 99%, although most

significantly, the degradation is rather pronounced for low FPR regions (below 0.015).

PDFRate with Binarized Features. One of our great surprises is the robustness of

the binarized PDFRate: despite the fact that the real-valued PDFRate is quite vulnerable,

the same classifier using binary features was 100% robust to EvadeML (Figure 4.6 (left)).

Consequently, this will serve as our robust baseline (equivalently, RAR would terminate with

no iterations). Feature-space retrained PDFRate-B also exhibits 100% evasion robustness,

although it does require a number of iterations to converge.

63

Original FSR
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss 1.00 1.00

0 0.005 0.01 0.015 0.02
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Original (AUC = 1.0000)
FSR (AUC = 0.9988)

Figure 4.6: Evasion robustness under EvadeML test (left) and performance on non-adversarial
data (right) of different classifiers for PDFRate-B.

Considering now the performance of PDFRate-B and FSR on non-adversarial test data

(Figure 4.6 (right)), we can make two interesting observations. First, the baseline PDFRate-B

is remarkably good even on this data; in a sense, it appears to hit the sweet spot of adversarial

robustness and non-adversarial performance. Second, FSR retrained classifier is competitive

in terms of AUC (∼ 99.9%), but is observably worse than the baseline classifier for very low

false positive rates.

4.4.3 Discussion

While we observed some value of using feature-space methods for boosting classifier robustness

to evasion attacks, it falls far short of the robustness we know we can achieve by using a

realizable attack oracle. Despite the advantages—in some cases substantial—in terms of

running time, our results suggest that relying on feature space models may not be satisfactory

in practice. There are two general reasons for the observed gap. First, synthetically generated

adversarial instances may in actuality not preserve malicious functionality, since they need

not abide by the system-level attack constraints. This would introduce noise and potentially

bias into the retraining process. Second, realistic adversarial instances may not be generated,

as they do not possess a sufficiently high objective value according to Eq. ((4.2)), in part

64

because better solutions according to this evasion model may not abide by realistic attack

constraints.

4.5 Conclusion

We undertook an extensive exploration of the extent to which robust ML that uses the

conventional feature-space models of evasion attacks remains robust to “real” attacks that

can be implemented in actual malware and preserve malicious functionality (what we call

realizable attacks). Our intriguing observation is that defense based on feature-space models

can fail to achieve satisfactory robustness. This in itself raises some doubts about the nearly

universal focus on such models as a means for ML defense, and suggests that practical

usefulness of such approaches cannot be taken for granted. However, we also show that

changing the nature of the feature space can make a difference: robust ML with feature-space

models is quite robust in content-based detection (which uses content, rather than structural

paths, as features).

It is natural to wonder how our approach and results are applied to other domains. In

computer vision, the analog of realizable malware attacks are physical attacks, whereby the

physical environment is modified, rather than the digital object, such as an image. Here,

the corresponding foundational question is whether common robust ML methods based on

small-lp attacks successfully protect against physical attacks. The notion of conserved features

can also be seen as more generally applicable. For example, in a bag-of-words representation

for spam filtering, these could correspond to the existence of URL or file attachments, and in

SQL injection attacks, these may refer to the existence of specific SQL commands, such as

Select.

65

The main limitation of our study is in the specific choices we had to make to ensure that it is

tractable. We chose a particular defensive paradigm—iterative retraining. As we have argued,

it is the only paradigm that can fit every case that we investigate; for example, there is no

other general approach for learning a robust SVM with non-linear kernels. However, it is

possible that approaches based on robust optimization, if they were developed, can improve

performance by taking advantage of the special structure of this problem. We implemented

a particular class of feature-space attacks, using l2 norm to measure the attacker’s cost of

feature manipulations, and stochastic local search to compute evasions. It is possible that

better attack algorithms for generating attacks over binary domains will be developed, and,

indeed, some alternatives exist. However, prior work suggests that this approach yields

attacks that are close to optimal [58], with the use of random restarts playing a crucial role.

Finally, our study was specific to PDF malware detection. However, our framework is quite

general, and could be used in the future to consider other similar questions, such as the

effectiveness of robust deep learning against physical attacks.

66

Chapter 5

Defending against Realizable Attacks in

PDF Malware Detection

In Chapter 4, we have shown that robust ML that uses feature-space attack models can

fail to defend against realizable attacks in the context of PDF malware detection. In spite

of the above limitations, the feature space methods have tremendous appeal due to their

relative speed and amenability to analysis. In this chapter, we present and evaluate a

surprisingly simple “fix” to enable feature-space model not merely to become competitive

with problem space approaches, but to actually exhibit better robustness. Specifically, we

show that augmenting the feature space models with conserved features (those that cannot

be unilaterally modified without compromising malicious functionality) significantly improves

performance. Moreover, we show that feature space models enable generalized robustness

when faced with a variety of realizable attacks, as compared to classifiers which are tuned to

be robust to a specific realizable attack.

67

5.1 Overview

Thus far, we had observed that ML hardened with the standard mathematically convenient

feature-space evasion attack model may in some cases not yield satisfactory robustness against

real attacks. The key issue is that feature-space models are entirely disembodied from the

domain. This is crucial to enable us to have mathematical formulations of attacks, but

clearly has limitations. The key question is whether we can devise a simple way of anchoring

feature-space attacks in the application domain to allow us to meaningfully and minimally

constrain abstract attacks to reflect some of the constraints that real attacks face. Next, we

propose a refinement of the feature-space model that aims to do just that.

Specifically, in this chapter we introduce the idea of conserved features, which we define to

be features, the unilateral modification of which compromises malicious functionality. We

develop this idea specifically for binary features, as this notion is particularly crisp in such a

case (e.g., such features tend to correspond to the existence of particular objects in PDF).

To develop intuition about the nature of conserved features, consider SL2013, which employs

structural paths as features to discriminate between malicious and benign PDFs. On the

one hand, the structural paths like /Type are unessential to preserve malicious behaviors,

and we do not expect them to be conserved. On the other hand, as the shellcode which

triggers malicious functionality is embedded in certain PDF objects, those corresponding

structural paths are likely to be conserved in each variant crafted from the same malicious

seed (e.g., /OpenAction/JS). In addition, structural paths that facilitate embedded script

in PDF files also can be conserved features as removing them can break the script (e.g.,

/Names and /Pages). This further illustrates that conserved features are not necessarily

optimal for statistically distinguishing benign and malicious instances (indeed, these may be

68

common to both); rather, they serve to anchor the feature-space attack model in the domain

by connecting features to malicious functionality.

Our first contribution is a method for boosting robustness of feature-space models without

compromising their mathematical convenience (crucial for most approaches for robust ML).

The key idea is to identify conserved features, that is, features that cannot be unilaterally

modified without compromising malicious functionality. We exhibit such features in our

setting, show that they cannot be identified with traditional statistical methods, and develop

an algorithm for automatically extracting them. Finally, we show that by simply constraining

that these features remain unmodified in adversarial training, feature-space approaches

become effective even for robust structure-based PDF malware detection.

Our second contribution is to explore the extent to which ML robustness is generalizable to

multiple distinct realizable attacks. Specifically, we expose both a robust classifier that was

retrained by using a realizable attack (EvadeML), and a model hardened using a feature-space

attack (accounting for conserved features), to a series of realizable attacks. Our results

reveal a stark difference between the two: ML models hardened using EvadeML are quite

fragile; in contrast, ML models hardened using feature-space attacks exhibit uniformly high

robustness to the other attacks. Remarkably, we demonstrate that ML models hardened

using feature-space attacks remain robust even against realizable attacks that defeat conserved

features.

5.2 Identifying Conserved Features

We now describe a systematic automated procedure for identifying conserved features in the

context of PDF malware detection. We first introduce how to identify conserved features of

69

SL2013 [102], and then describe how to generalize the approach to extract conserved features

of other classifiers which are employed in our case study in chapter 4.

The key to identifying the conserved features of a malicious PDF is to discriminate them

from non-conserved ones. Since merely applying statistical approaches on training data is

insufficient to discriminate between these two classes of features, as demonstrated above, we

need a qualitatively different approach which relies on the nature of evasions (as implemented

in EvadeML [126]) and the sandbox (which determines whether malicious functionality is

preserved) to identify features that are conserved.

We use a modified version of pdfrw [74]5 to parse the objects of PDF file and repack them

to produce a new PDF file. We use Cuckoo [35] as the sandbox to evaluate malicious

functionality. In the discussion below, we define xi to be the malicious file, Si the conserved

feature set of xi, and Oi the set of its non-conserved features. Initially, Si = Oi = ∅.

At the high level, our first step is to sequentially delete each object of a malicious file and

eliminate non-conserved features by evaluating the existence of a malware signature in a

sandbox for each resulting PDF, which provides a preliminary set of conserved features. Then,

we replace the object of each corresponding structural path in the resulting preliminary set

with an external benign object and assess the corresponding functionality, which allows us to

further prune non-conserved features. Next, we describe these procedures in detail.

5.2.1 Structural Path Deletion

In the first step, we filter out non-conserved features by deleting each object and its corre-

sponding structural path, and then checking whether this eliminates malicious functionality

(and should therefore be conserved). First, we obtain all the structural paths (objects) by
5The modified version is available at https://github.com/mzweilin/pdfrw.

70

https://github.com/mzweilin/pdfrw

parsing a PDF file. These objects are organized as a tree-topology and are sequentially

deleted. Each time an object is removed, we produce a resulting PDF file by repacking

the remaining objects. Then, we employ the sandbox to detect malicious functionality of

the PDF after the object deletion. If any malware signature is captured, the corresponding

structural path of the object is deleted as a non-conserved feature, and added to Oi. On the

other hand, if no malware signature is detected, the corresponding feature is added in Si as a

possibly conserved feature.

One important challenge in this process is that features are not necessarily independent.

Thus, in addition to identifying Si and Oi, we explore interdependence between features by

deleting objects. As the logic structure of a PDF file is with a tree-topology, the presence

of some structural path depends on the presence of other structural paths whose object

refers to the object of the prior one. We define that a structural path is a dependent of

another if unilateral deleting the object associated with the latter causes a flip from 1 to 0

on the feature value of the former. For any feature j of xi, we denote the set of features that

depend on j by Dj
i . Note that for a given structural path (feature), there could be multiple

corresponding PDF objects. In such a case, these objects are deleted simultaneously, so as

the corresponding feature value is shifted from 1 to 0.

5.2.2 Structural Path Replacement

In the second step, we subtract the remaining non-conserved features in the preliminary Si

and move them to Oi. Similar to the prior step, we first obtain all the structural paths and

objects of the malicious PDF file. Then for each object of the PDF that is in Si, we replace

it with an external object from a benign PDF file and produce the resulting PDF, which is

further evaluated in the sandbox. If the sandbox detects any malware signature, then the

corresponding structural path of the object replaced is moved from Si to Oi. Otherwise, the

71

structural path is a conserved feature since both deletion and replacement of the corresponding

object removes the malicious functionality of the PDF file. Note that in the case of multiple

corresponding and identical objects of a structural path, all of these objects are replaced

simultaneously.

After structural path deletion and replacement, for each malicious PDF file xi, we can get its

conserved feature set Si, non-conserved feature set Oi, and dependent feature set Dj for any

feature j ∈ Si ∪ Oi, which could be further leveraged to design evasion-robust classifiers.

5.2.3 Obtaining a Uniform Conserved Feature Set

The systematic approach discussed above provides a conserved feature set for each malicious

seed to retrain a classifier. Our goal, however, is to identify a single set of conserved features

which is independent of the specific malicious PDF seed file. We now develop an approach

for transforming a collection of Si, Oi, and Dji for a set of malicious seeds i into a uniform set

of conserved features.

Obtaining a uniform set of conserved features faces two challenges: 1) minimizing conflicts

among different conserved features, as a conserved feature for one malicious instance could be

a non-conserved feature for another, and 2) abiding by feature interdependence if a conserved

feature should be further eliminated.

To address these challenges, we propose a Forward Elimination algorithm to compute the

uniform conserved feature set for a set of malicious seeds {x1, x2, ..., xn}, given the conserved

feature sets, non-conserved feature sets and dependent sets for each seed. As Algorithm 3

shows, we first obtain a union of the conserved feature sets. Then, we explore the contradiction

of each feature in the union with the others, by comparing the total number of the feature

being selected as a non-conserved feature and conserved feature. If the former one is greater

72

Algorithm 3 Forward Elimination for uniform conserved feature set.
Input:

The set of conserved features for xi(i ∈ [1, n]), Si;
The set of non-conserved features for xi(i ∈ [1, n]), Oi;
The set of dependent features for j ∈ Si ∪ Oi , Dj

i ;
Output:

The uniform conserved feature set for {x1, x2, ..., xn}, S;
1: S←

⋃n
i=1 Si;

2: S
′ ← S;

3: Q← ∅;
4: Dj =

⋃n
i=1 D

j
i ;

5: for each j ∈ S
′ do

6: if j /∈ Q then
7: if

∑n
i=1 1j∈Oi ≥ β ·

∑n
i=1 1j∈Si then

8: S← S \ ({j} ∪ Dj);
9: Q← Q ∪ ({j} ∪ Dj);
10: end if
11: end if
12: end for
13: return S;

than β times the latter one, then this feature, together with its dependents, are eliminated

from the union. Otherwise, the feature is added to the uniform feature set. We use β as a

parameter to adjust the balance between conserved and non-conserved features. Typically,

β > 1 as we are inclined to preserve malicious functionality associated with a conserved

feature, even it could be a non-conserved feature of another PDF file. We set β = 3 in our

experiments.

5.2.4 Identifying Conserved Features for Other Classifiers

Once we obtain conserved features of SL2013 for each malicious seeds, we can employ these

features to identify conserved features for other classifiers using binary features. As our

approach relies on the existence of malicious functionality and corresponding features, such

73

a relation is not obvious for real-valued features; we therefore leave the question of how to

define and identify conserved features in real space for future work.

Hidost. Hidost and SL2013 are similar in nature in such a way that they employ structural

paths as features. The only difference is that Hidost consolidates features of SL2013 as

described in Chapter 4. Therefore, once the conserved features of SL2013 are identified,

we can simply apply the PDF structural path consolidation rules described in Srndic and

Laskov [104] to transform these features to the corresponding conserved features for Hidost.

Binarized PDFRate. We identify the conserved features for PDFRate-B by using the

conserved feature set Si of each seed xi. For each xi, we generate |Si| PDF files, each of

which corresponds to the PDF file when an element (structural path) in Si is deleted. We

then compare PDFRate-B features of these PDFs to the original xi. If any feature value of

xi is flipped from 1 to 0, then this feature will be added in the conserved feature set of xi

for PDFRate-B. Afterward, we use Algorithm 3 to obtain the uniform conserved feature set.

This approach can in fact be used for arbitrary PDF malware detectors over binary features

(leveraging conserved structural paths identified using SL2013).

5.3 Classifying Using Only Conserved Features

We begin by exploring the effectiveness of using only conserved features for classification. We

identified 8 conserved features for SL2013 (out of ∼6000), 7 for Hidost (out of ∼1000), and 4

for PDFRate-B (out of 135); these are detailed in Table 5.1.

We start by considering four natural questions pertaining to conserved features: 1) are they

sufficient to make a classifier robust to evasions, 2) do they effectively discriminate between

benign and malicious instances, 3) can they be identified using standard statistical methods

74

Table 5.1: Conserved features and their relevance to JavaScript.

Classifier Conserved features Involve JS?

SL2013

/Names No
/Names/JavaScript Yes

/Names/JavaScript/Names Yes
/Names/JavaScript/Names/JS Yes

/OpenAction No
/OpenAction/JS Yes
/OpenAction/S No

/Pages No

Hidost

/Names No
/Names/JavaScript Yes

/Names/JavaScript/Names Yes
/Names/JavaScript/Names/JS Yes

/OpenAction No
/OpenAction/JS Yes

/Pages No

PDFRate-B

count_box_other No
count_javascript Yes

count_js Yes
count_page No

(such as sparse regularization), and 4) are they just detecting the presence of JavaScript in

PDF?

We explore these for SL2013. Specifically, we trained a classifier using only the 8 conserved

features (CF henceforth). As we can see in Figure 5.1 (left), this classifier is 100% robust

to EvadeML attacks, appearing to resolve the first question. However, we emphasize that

conserved features alone need not capture the full spectrum of adversarial behavior and

constraints. Indeed, in Section 5.5 we show that classifiers based solely on conserved features

can also be evaded, particularly if attacks are specifically designed to evade them. Rather, as

we show presently, they provide a sufficient anchoring in the problem domain for feature-space

attack models to succeed.

75

RAR CF Linear
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss 0.96 1.00

0.20

0 0.005 0.01 0.015 0.02
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RAR (AUC = 0.9999)
CF (AUC = 0.9439)
Linear (AUC = 0.9950)

Figure 5.1: Classifying with conserved features: comparing evasion robustness (left) and
ROC curves (right).

To address question (2), consider Figure 5.1 (right): clearly, if we desire a low false positive rate,

using only conserved features for classification yields subpar performance on non-adversarial

data.

To address the third question, we learn a linear SVM classifier for SL2013 with l1 regularization

(henceforth, Linear) where we empirically adjust the SVM parameter C to perform feature

reduction until the number of the features is also 8; we find that only 3 of these are conserved

features.6 As we can see in Figure 5.1 (left), this classifier exhibits poor robustness; thus,

statistical methods are insufficient to identify good conserved features.

To address the fourth question, we create a classifier using only one boolean feature which

identifies the presence of JavaScript in a PDF file (henceforth, we refer to this feature as

JS). We find that this classifier is also robust to EvadeML. On non-adversarial data, JS

achieves FPR of 0.04 and FNR of 0.14 (in other words, 4% of the benign files in the non-

adversarial dataset use JavaScript, while 14% of malicious instances use alternative attacks to
6The sparse versions of Hidost includes only 3 of the conserved features, while sparse PDFRate-B includes

only 1. In another experiment, we adjusted C until all conserved features were selected. In this case, SL2013
requires 510 features, Hidost needs 154, and PDFRate-B needs 83.

76

Javascript).7 To create an apples-to-apples comparison with the CF classifier, we empirically

adjust the classification threshold of CF until we get the same FPR with JS. The resulting CF

classifier exhibits FNR of 0.11, considerably better than JS. Nevertheless, it is clear that using

either CF (only conserved features), or only JS, is impractical, since both FNR and FPR of

these are quite high. Moreover, as we show in Section 5.5, classifiers based only on conserved

features can be defeated by other realizable attacks. Next, we show that identification of

conserved features is nevertheless crucial in creating highly effective feature-space attack

models.

5.4 Feature-Space Model with Conserved Features

As discussed in chapter 4 , the feature-space evasion model in Eq. (4.2) may not sufficiently

boost ML robustness. Since conserved features allow us to minimally tie the abstract feature-

space representation to malicious functionality, we offer a natural modification of the model

in Eq. (4.2), imposing the constraint that conserved features cannot be modified by the

attacker. We formally capture this in the new optimization problem in Eq. (5.1), where S is

the set of conserved features:

minimize
x

Q(x) = f(x) + λc(xM , x),

subject to xi = xM,i, ∀i ∈ S.

(5.1)

Other than this modification, we use the same Coordinate Greedy algorithm with random

restarts as before to compute adversarial examples. We adopt the evasion model in Eq. (5.1)

to retrain the target classifier using the retraining procedure from Section 4.3. We denote

the classifier obtained by the retraining procedure using a feature-space model grounded by
7We observe similar results for 5,000 benign PDFs obtained by using Google web searches [103], where 3%

of benign files use Javacript.

77

Original RAR CFR CFR-JS
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.16

0.96
0.87

1.00

0 0.005 0.01 0.015 0.02
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Original (AUC = 0.9999)
RAR (AUC = 0.9999)
CFR (AUC = 0.9992)
CFR-JS (AUC = 0.9997)

Figure 5.2: Evasion robustness (left) and performance on non-adversarial data (right) of
different variants of SL2013.

conserved features by CFR. We also study the effectiveness of our automated procedure for

identifying conserved features as compared to using a subset that only considers Javascript

features (we can think of these as expert-identified conserved features, as this is what an

expert would naturally consider). To this end, we repeat the procedure above by replacing

the conserved feature set S in Eq. 5.1 with a subset that involves Javascript. The classifier

resulting from such restricted adversarial retraining with “expert”-identified conserved features

is termed CFR-JS.

5.4.1 SL2013

We now evaluate the robustness and effectiveness of the feature space retraining approach,

which uses conserved features. We set the parameter λ = 0.005 as before. The robustness

results are presented in Figure 5.2 (left). Observe that CFR now significantly improves

robustness of the original classifier, with evasion robustness rising from 16% to 87%. Moreover,

CFR-JS achieves a 100% evasion robustness against EvadeML. These results demonstrate

that by leveraging the conserved features, the feature-space evasion models are now quite

effective as a means to boost evasion robustness of SL2013.

78

Original RAR CFR CFR-JS
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.02

0.98 1.00

0.53

0 0.005 0.01 0.015 0.02
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Original (AUC = 0.9997)
RAR (AUC = 0.9997)
CFR (AUC = 0.9982)
CFR-JS (AUC = 0.9965)

Figure 5.3: Evasion robustness (left) and performance on non-adversarial data (right) of
different variants of Hidost.

In Figure 5.2 (right) we evaluate the quality of these classifiers on non-adversarial test data

in terms of ROC curves. In all cases, be it original, RAR, CFR, and CFR-JS, AUC is

> 99.9%, although we can see a slight degradation of CFR for extremely low false positive

rates compared to the others. It is noteworthy that CFR performs much better than FSR

(robust ML using a standard feature-space approach, recall Figure 4.2 (right)).

5.4.2 Hidost

Next, we evaluate the effectiveness of CFR for Hidost. The results are shown in Figure 5.3

(left) and are largely consistent with SL2013. In particular, CFR boosts evasion robustness

from 2% to 100% (slightly better than RAR), well above conventional FSR (recall Figure

4.4 (left)). In contrast, CFR-JS only boosts robustness to 53%, showing that our algorithmic

approach can in some cases offer a considerable advantage to expert-chosen conserved features.

Evaluating the performance of CFR and CFR-JS on non-adversarial test data in terms of

ROC curves in Figure 5.3 (right), we find that the CFR classifier can achieve ∼ 99.8%

AUC. This is somewhat worse than RAR, particularly for very low false positive rates, but

79

Original CFR CFR-JS
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss 1.00 1.00 1.00

0 0.005 0.01 0.015 0.02
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Original (AUC = 1.0000)
CFR (AUC = 0.9999)
CFR-JS (AUC = 0.9997)

Figure 5.4: Evasion robustness (left) and performance on non-adversarial data (right) of
different variants of PDFRate-B.

better than CFR-JS—again, in this case using the full batch of conserved features exhibits a

significant advantage over solely looking for Javascript.

5.4.3 Binarized PDFRate

Finally, we evaluate the effectiveness of the CFR variants of PDFRate-B. We observe that both

the CFR and CFR-JS classifiers in the PDFRate-B family achieve 100% evasion robustness

against EvadeML (Figure 5.4 (left)), just as the RAR and FSR counterparts had.

However, a close look at Figure 5.4 (right) demonstrates that CFR and CFR-JS achieve

far better performance on non-adversarial data, with >99.9% AUC, where improvements

are particularly significant for small false positive rates compared to FSR (recall Figure 4.6

(right)). Moreover, in this experiment, CFR achieves slightly higher TPR than CFR-JS

for low FPR regions (below 0.003). The main takeaway here is that although the feature-

space approach already yields high robustness in this setting, introducing conserved features

significantly mitigates its degradation in performance on non-adversarial data.

80

5.5 Additional Realizable Evasion Attacks

So far we used EvadeML [126] as the primary realizable attack in our experiments. This

choice is defensible, as EvadeML explores a significantly larger attack space than many other

evasion methods (e.g., Mimicry [103]), allowing deletions and swaps, in addition to insertions.

Nevertheless, it is natural to wonder whether classifiers robust to EvadeML remain robust

to other classes of evasion attacks. A particularly intriguing question is how the classifiers

hardened against EvadeML fare in comparison with classifiers hardened against feature-space

models, when faced with different realizable attacks.

To answer these questions, we consider five additional realizable attacks: Mimicry [103], which

was one of the first realizable attacks on PDF malware detectors, Mimicry+, an enhanced

variant of Mimicry, MalGAN [46], which uses Generative Adversarial Networks (GANs) to

create evasion attacks (but only targets binary classifiers), Reverse Mimicry [72], which inserts

malicious payloads into target benign files, and a new custom attack aimed at defeating

PDFRate-B conserved features, and our Custom Attack, which targets a feature extraction

bug in the Mimicus implementation of PDFRate in order to defeat the corresponding CF

classifier. The Mimicry/Mimicy+ attacks are designed specifically for PDFRate, and cannot

be usefully applied to SL2013 or Hidost, whereas the Reverse Mimicry attack and our custom

attack require zero knowledge of target classifiers. In our experiments, W=we use the same

100 malicious seeds employed in Chapter 4 and Section 5.4 as attack files.

5.5.1 Mimicry and Mimicry+ Attacks

We start by considering the Mimicry [103] and Mimicry+ attacks for both real-valued and

binarized variants of PDFRate.

81

Mimicry assumes that an attacker has full knowledge of the features employed by a target

classifier. The mimicry attack then manipulates a malicious PDF file so that it mimics a

particular selected benign PDF as much as possible. The implementation of Mimicry is

simple and independent of any particular classification model.

Our mimicry attack uses the Mimicus [103] implementation, which was shown to successfully

evade the PDFRate classifier. To improve its evasion effectiveness, Mimicus chooses 30

different target benign PDF files for each attack file. It then produces one instance in feature

space for each target-attack pair by merging the malicious features with the benign ones.

The feature space instance is then transformed into a PDF file using a content injection

approach. The resulting 30 files are evaluated by the target classifier, and only the PDF

with the best evasion result is selected, which was submitted to WEPAWET [19] to verify

malicious functionality. To make Mimicry consistent with our framework, we employ the

Cuckoo sandbox [35] in place of WEPAWET (which was in any case discontinued) to validate

maliciousness of the resulting PDF file.

In addition to the original version of Mimicry, we implement an enhanced variation, Mimicry+,

with two modifications. First, Mimicry+ chooses the 30 most benign PDF files predicted

by the target classifier as target files (instead of randomly selecting those, as in Mimicry).

Second, for each attack file, all the resulting 30 files are evaluated by the sandbox and only

those verified to have malicious functionality are selected to evade the target classifier.

The results are shown in Figures 5.5 and 5.6, and offer two noteworthy findings. First, as can

be seen in Figure 5.6, RAR classifiers (hardened specifically against EvadeML, recall that the

original PDFRate-B classifier is equivalent to RAR) can be quite vulnerable to the Mimicry+

attack, whereas both FSR and CFR classifiers remain robust. Second, Mimicry+ is indeed

a much stronger attack than Mimicry: the original Mimicry fails to significantly degrade

82

RAR FSR
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss 0.94 1.00

RAR FSR CFR CFR-JS
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.91
1.00 1.00 1.00

Figure 5.5: Robustness to Mimicry attack. Left: PDFRate-R (note that our notion of CFR
is not applicable here). Right: PDFRate-B.

RAR FSR
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.06

1.00

RAR FSR CFR CFR-JS
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss
0.84

1.00 1.00 1.00

Figure 5.6: Robustness to Mimicry+ attack. Left: PDFRate-R (note that our notion of CFR
is not applicable here). Right: PDFRate-B.

RAR performance, whereas Mimicry+ largely evades the RAR variant of PDFRate-R, and is

somewhat more potent against PDFRate-B than Mimicry. This demonstrates that besides

its mathematical elegance, the abstract feature-space evasion models, once appropriately

anchored to the domain, are rather generally robust to evasion attacks.

83

RAR CFR CFR-JS
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.00

1.00 1.00

RAR CFR CFR-JS
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.14

1.00 1.00

RAR FSR CFR CFR-JS
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.00

1.00 1.00 1.00

Figure 5.7: Robustness to MalGAN attack. SL2013 (left), Hidost (middle), PDFRate-B
(right).

5.5.2 MalGAN Attack

Next, we consider the MalGAN attack [46] on the three classifiers over binary feature space

we have previously studied: SL2013, Hidost, and PDFRate-B, with RAR and FSR/CFR

versions that have been shown robust to EvadeML.

MalGAN is a Generative Adversarial Network [32] framework to generate malware examples

which can evade a black-box malware detector with binary features. It assumes that an

attacker knows the features, but has only black-box access to the detector decisions. MalGAN

comprises three main components: a generator which transforms malware to its adversarial

version, a black-box detector which returns detection results, and a substitute detector which

is used to fit the black-box detector and train the generator. The generator and substitute

detector are feed-forward neural networks which work together to evade the black-box detector.

The results of [46] show that MalGAN is able to decrease the True Positive Rate on the

generated examples from > 90% to 0%. We note that strictly speaking, MalGAN variants are

not implemented as actual PDF files; however, we still treat it as a realizable attack since it

only adds features to a malicious file, which can be implemented (at least in structure-based

detection) by adding the associated objects into the PDF file.

84

The results, shown in Figure 5.7, demonstrate that despite EvadeML being a powerful attack,

the RAR approaches which use it for hardening (with resulting classifiers no longer very

vulnerable to EvadeML) are highly vulnerable to MalGAN, with evasion robustness of 0%

in most cases. In contrast, CFR models which use conserved features remain highly robust

(100% in all cases), just as we had observed earlier.

5.5.3 Reverse Mimicry Attack

Next, we employ the Reverse Mimicry attack [72] on the EvadeML-robust variants of all the

classifier types (SL2013, Hidost, PDFRate-R, and PDFRate-B).

The Reverse Mimicry attack assumes that an attacker has zero knowledge of the target

classifier. The basic idea is to inject malicious payloads into target benign files to minimize

the structural difference between the resulting examples and targets. Our Reverse Mimicry

attack employs the adversarial examples provided by Maiorca et al. [72] which was shown to

successfully evade PDF classifiers based on structural analysis. Specifically, we use the 500

PDF files produced by injecting a malicious JavaScript code that does not contain references

to other objects to target benign PDF files. We selected the 376 files out of 500 that display

malicious behaviors detected by the Cuckoo sandbox.

Figure 5.8 presents the results, which are revealing in several ways. First, we again observe

that RAR (hardened specifically against EvadeML) is roundly defeated in most cases. Second,

consider the robustness results for the classifier using only the conserved features (CF), we can

see that reverse mimicry succeeds in defeating conserved features for a non-trivial proportion

of instances. It does so by including Javascript tags in structural paths that are not used

as features by SL2013/Hidost (since these classifiers only consider commonly occurring sets

of structural paths). Thus, this attack reveals an important vulnerability in the feature

85

RAR CFR CFR-JS CF
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.25

0.89
0.77 0.84

RAR CFR CFR-JS CF
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.28

0.97 0.93
0.79

RAR FSR
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.32

1.00

RAR FSR CFR CFR-JS CF
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss 0.97 0.98 1.00 1.00 1.00

Figure 5.8: Robustness to Reverse Mimicry attack. SL2013 (top left), Hidost (top right),
PDFRate-R (bottom left), PDFRate-B (bottom right). Note that our notions of CFR and
CF for PDFRate-R is not applicable here.

extraction approach employed by these classifiers; indeed, it suggests that structure-based

classifiers may be inherently difficult to harden. Remarkably, CFR remains more robust than

CF despite these vulnerabilities. The case of Hidost is particularly stark: CFR is nearly 20%

more robust than CF!

5.5.4 The Custom Attack

Our final custom attack exploits a feature extraction vulnerability in the Mimicus imple-

mentation of PDFRate. Normally, the characters used in the Name objects of a PDF file

are limited to a specific set. Since PDF specification version 1.2, a lexical convention has

86

Table 5.2: Transformation of entry names in the custom attack.

Entry Hexadecimal Representation
/Action /#41#63#74#69#6f#6e
/Filter /#46#69#6c#74#65#72
/Length /#4c#65#6e#67#74#68

/JavaScript /#4a#61#76#61#53#63#72#69#70#74
/JS /#4a#53
/S /#53

/Type /#54#79#70#65

RAR FSR
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss

0.30

1.00

RAR FSR CFR CFR-JS CF
Classifier

0.0
0.2
0.4
0.6
0.8
1.0

Ev
as

io
n

Ro
bu

st
ne

ss 1.00 1.00 0.98 1.00

0.00

Figure 5.9: Robustness to the custom attack. Left: PDFRate-R (note that our notions of
CFR and CF are not applicable here). Right: PDFRate-B.

been added to represent a character with its hexadecimal ANSI-code, e.g., #xx. Such a

modification enables us to create an arbitrary string in the form of #xx#xx#xx. In our

implementation, we replaced a set of entries in the attack PDF files with their hexadecimal

representations (see Table 5.2). These features were selected with the goal to obfuscate tags

crucial to the code execution in PDF, which are frequently used for feature extraction. With

this technique, the scanner would not be able to detect malicious code without dynamically

reconstructing the PDF structure. While it is theoretically possible to replace all the ASCII

text inside the document, we chose not to do that due to the concern on the expansion of file

size.

87

The results are shown in Figure 5.9. We find that after this attack, CF robustness is 0. We

also observe that the robustness of RAR classifier for PDFRate-R also drops, although to

0.3 rather than 0. Significantly, the FSR classifiers for both PDFRate-R and PDFRate-B

remain 100% robust, and the CFR variant of PDFRate-B has nearly perfect robustness

(0.98) against this attack. Our latter observation is particularly remarkable: although the

conserved features are roundly defeated by this attack, the use of these as a part of a holistic

retraining approach yields a classifier that remains robust. Thus, not only is it possible to

construct a robust malware classifier without unduly relying on conserved features, but we

can accomplish this through iterative retraining in feature space.

5.6 Conclusion

In this chapter, we presented a refined version of the feature-space model that makes use of

conserved features (which we can identify automatically), and showed that where feature-

space defense previously failed, it now succeeds. Our finding may well be the most intriguing:

feature-space approaches exhibit generalized robustness, in that the resulting robust ML (after

appropriate refinement using conserved features) exhibits robustness to multiple realizable

attacks. This contrasts with defense that is hardened using a specific realizable attack—even

one quite powerful on the surface (EvadeML)—which can fail dramatically when faced with a

different attack. These findings demonstrate the power of effective mathematical abstractions

in security.

There are several limitations of our method that can offer further opportunities for future

work. One example is the fact that we only define conserved features when these are binary; it

may be that finding meaningful conserved features in continuous feature spaces is inherently

more difficult. Another issue is the surprising finding that sufficient anchoring of feature-space

88

defense in the domain using conserved features allows us to achieve robustness, even when

conserved features can be circumvented. It may be that conserved features are ultimately

only a part of the solution, and only help if they adequately capture the attack surface in the

abstract feature space. The extent to which small variations in the set of identified conserved

features matters is also an open question: our evidence is mixed, with “expert”-defined features

usually, but not always, sufficient for robustness.

89

Chapter 6

Defending against Non-Salient

Adversarial Examples in Image

Classification

In this chapter, we focus on robust learning in image classification. Despite the remarkable

success of deep neural networks, significant concerns have emerged about their robustness

to adversarial perturbations to inputs. While most attacks aim for being unsuspicious,

there is no universal notion of what it means for adversarial examples. Here, we focus on

salience as a way to capture whether perturbations are suspicious, and propose a general

approach for defending against non-salient attacks. To capture cognitive salience, we split

an image into foreground (salient region) and background (the rest), and allow significantly

larger adversarial perturbations in the background, while ensuring that cognitive salience of

background remains low. We describe how to compute the resulting non-salience-preserving

90

dual-perturbation attacks on classifiers. We then show that adversarial training with dual-

perturbation attacks yields classifiers that are considerably more robust to such attacks,

as well as to background perturbations, than state-of-the-art robust learning approaches,

without compromising robustness to conventional attacks. In addition, our defense against

non-salient attacks results in classifiers that align well with human perception.

6.1 Overview

An observation by [108] that state-of-the-art deep neural networks that exhibit exceptional

performance in image classification are fragile in the face of small adversarial perturbations of

inputs has received a great deal of attention. A series of approaches for designing adversarial

examples followed [13, 33, 108], along with methods for defending against them [71, 87], and

then new attacks that defeat prior defenses, and so on. Attacks can be roughly classified

along three dimensions: 1) introducing small lp-norm-bounded perturbations, with the goal

of these being imperceptible to humans [71], 2) using non-lp-based constraints that capture

perceptibility (often called semantic perturbations) [6], and 3) modifying physical objects,

such as stop signs [25], in a way that does not arouse suspicion. One of the most common

motivations for the study of adversarial examples is safety and security, such as the potential

for attackers to compromise the safety of autonomous vehicles that rely on computer vision [25].

However, while imperceptibility is certainly sufficient for perturbations to be unsuspicious, it

is far from necessary, as physical attacks demonstrate. On the other hand, while there are

numerous formal definitions that capture whether noise is perceptible [13, 82], what makes

adversarial examples suspicious has been largely informal and subjective.

We propose a simple formalization of an important aspect of what makes adversarial pertur-

bations unsuspicious based on the notion of cognitive salience [39, 55]. Specifically, we make

91

Input Image Clean AT-PGD AT-Dual

Airplane

Truck

Elephant

Figure 6.1: Visualization of loss gradient of different classifiers with respect to pixels of non-
adversarial inputs. Clean is the model that takes no defense. AT-PGD denotes adversarial
training using the PGD attack. AT-Dual is our proposed defense. It can be seen that
AT-Dual aligns significantly better with human perception.

a distinction between image foreground and background based on how much attention a

human viewer pays to the different parts of the captured scene. We capture this as a concrete

threat model by allowing significantly more noise in the background (which has low salience)

than the foreground (which has high salience). In effect, we posit that perturbations in the

foreground, when visible, will arouse significantly more suspicion (by being cognitively more

salient) than perturbations made in the background.

Our first contribution is a formal model of such dual-perturbation attacks, which is a gen-

eralization of the lp-norm-bounded attack models that explicitly aims to ensure that the

adversarial perturbation does not make the background highly salient. Second, we propose

an algorithm for finding adversarial examples using this model, which is an adaptation of

the PGD (projected gradient descent) attack [71]. Since our ultimate goal is robustness to

non-salient adversarial examples, our third contribution is to embed the dual-perturbation

92

attacks in the adversarial training loop [71] instead of PGD or other conventional variants;

we term the resulting defense AT-Dual. We then experimentally evaluate first our approach

to designing non-salient adversarial examples, and then the effectiveness of this threat model

in making classifiers robust to a broad class of non-salient adversarial example attacks. We

show that the proposed approach indeed yields adversarial examples that do not significantly

increase the salience of background, despite adding substantially more noise to it. Most

significantly, we show that adversarial training which uses our dual-perturbation attack

model yields significantly higher robustness to such non-salience-preserving attacks than

state-of-the-art adversarial training alternative. Moreover, it maintains comparable robustness

to conventional lp-norm bounded attacks to state-of-the-art approaches. In addition, we

show increased robustness of our defense to background perturbation. Finally, as shown

in Figure 6.1 which visualizes the loss gradient of AT-Dual (proposed approach) with two

alternative image classifiers, our approach results in models that align better with human

perception than even adversarial training which uses PGD-based adversarial examples.

6.2 Dual-Perturbation Attacks

6.2.1 Motivation

Our threat model is motivated by the feature integration theory [111] in cognitive science:

regions that have features that are different from their surroundings are more likely to catch

a viewer’s gaze. Such regions are called salient regions, or foreground, while the others are

called background. Accordingly, for a given image, the semantics of the object of interest

is more likely to be preserved in the foreground, as it catches more visual attention of a

viewer compared to the background. If the foreground of an image is corrupted, then the

semantics of the object of interest is broken. In contrast, the same extent of corruption in

93

Original
Sample

Corrupted
Background

Corrupted
Foreground

Figure 6.2: Semantic distinction between foreground and background. Left: Original image
of bears. Middle: Adversarial example with `∞ bounded perturbations (ε = 40/255) on the
background, the semantic meaning (bear) is preserved. Right: Adversarial example with `∞
bounded perturbations (ε = 40/255) on the foreground, with more ambiguous semantics.

the background nevertheless preserves the overall semantic meaning of the scene captured

(see, e.g., Figure 6.2).

Despite this important cognitive distinction between foreground and background, essentially

all of the attacks on deep neural networks for image classification make no such distinction,

even though a number of other semantic factors have been considered [6, 80]. Rather, much of

the focus has been on adversarial perturbations that are not noticeable to a human, but which

are applied equally to the entire image. However, in security applications, the important

issue is not merely that an attack cannot be noticed, but that whatever observed is not

suspicious. The main goal of the threat model we introduce next is therefore to capture more

precisely the notion that an adversarial example is not suspicious by leveraging the cognitive

distinction between foreground and background of an image.

6.2.2 Modeling Non-Salient Adversarial Examples

At the high level, our proposed threat model involves producing small (imperceptible)

adversarial perturbations in the foreground of an image, and larger perturbations in the

94

background. This can be done by incorporating state-of-the-art attacks into our method:

we can use one attack with small ε in the foreground, and another with a large ε in the

background. Consequently, we term our approach dual-perturbation attacks. Note that these

clearly generalize the standard small-norm (e.g., PGD) attacks, since we can set the ε to be

identical in both the foreground and background. However, the key consideration is that

after we add the large amount of noise to the background, we must ensure that we do not

thereby make it highly salient to the viewer. We capture this second objective by including

in the optimization problem a salience term that decreases with increasing salience of the

background.

Formally, the dual-perturbation attack solves the following optimization problem:

max
||δ◦F(x)||p≤εF ,||δ◦B(x)||p≤εB

L (hθ(x+ δ), y) + λ · S (x+ δ) , (6.1)

where S (x+ δ) measure the non-salience of background after adversarial noise δ has been

added, with λ a parameter that explicitly balances the two objectives: maximizing predicted

loss on adversarial examples, and limiting background salience so that the adversarial example

produced is unsuspicious. Here F returns the mask matrix constraining the area of the

perturbation in the foreground, and B returns the mask matrix restricting the area of the

perturbation in the background, for an input image x. F(x) and B(x) have the same

dimension as x and contain 1s in the area which can be perturbed and 0s elsewhere. ◦ denotes

element-wise multiplication for matrices. Hence, we have x = F(x) + B(x) which indicates

that any input image can be decomposed into two independent images: one containing just

the foreground, and the other containing the background.

We consider two approaches for modeling the suspiciousness S(x+ δ) of a perturbed image

x+ δ. Our primary method is to make use of the variance of an image’s Laplacian as the

95

measure of salience [89]. The Laplacian approach highlights regions of an image containing

rapid intensity changes such as shape edges. Thus, a Laplacian with a larger variance indicates

a more focused and sharper image, while a smaller variance suggests a smooth image that is

less salient. We adopt this idea and measure background non-salience of a perturbed image

by using its negative variance of the background area of its Laplacian, which is defined as

S(x+ δ) = −Var({Lap(Gray(x+ δ))k|B(x)k 6= 0 }), (6.2)

where Gray(·) converts an RGB image to grayscale, Lap(·) is the Laplacian filter, and Var(·)

computes the population variance of a set. Our alternative approach leverages a recent study

on human fixation prediction [55], which is detailed in Appendix B.1.

6.2.3 Identifying Foreground and Background

Given an input x, we aim to compute F(x), the foreground mask and B(x), the background

mask. We consider two approaches for this: fixation prediction and segmentation.

Our first method leverages the fixation prediction approach [55] to identify foreground

and background. This enables a general approach for foreground-background partition as

fixation predictions are not limited to any specific collection of objects. Specifically, we

first use DeepGaze II [55] to output predicted pixel-level density of human fixations on an

image. We then divide the image into foreground and background by setting a threshold

t = 0.5 · (smin(x) + smax(x)) for each input image x where (smin, smax) are the minimum

and maximum values of human fixation on pixels of x. Pixels with larger values than t are

grouped into the foreground, and the others are identified as background subsequently.

Our second approach is to make use of semantic segmentation to provide a partition of the

foreground and background in pixel level. This can be done in two steps: First, we use

96

state-of-the-art paradigms for semantic segmentation (e.g., [68]) to identify pixels that belong

to each corresponding object, as there might be multiple objects in an image. Next, we

identify the pixels that belong to the object of interest as the foreground pixels, and the

others as background pixels.

We use both of the above approaches in dual-perturbation attacks when evaluating the

robustness of classifiers, as well as designing robust models. Note that we use the same

foreground and background partition for a non-adversarial image x and its perturbed version

x+δ. Specifically, we first use the above approaches to identify the foreground and background

of x; we then apply the same partition on x+δ. We purposefully choose not to use the above

deep-learning-based partition methods directly on x+ δ, as the corresponding neural models

are trained on non-robust data, and they could lead to adversarial attacks on the partition.

6.2.4 Computing Dual-Perturbation Attacks

A natural approach for solving the optimization problem shown in Eq. (6.1) is to apply

an iterative method, such as the PGD attack. However, the use of this approach poses

two challenges in our setting. First, as in the PGD attack, the problem is non-convex,

and PGD only converges to a local optimum. We can address this issue by using random

starts, i.e., by randomly initializing the starting point of the adversarial perturbations, as

in [71]. Second, and unlike PGD, the optimization problem in Eq. (6.1) involves two hard

constraints ||δ ◦ F(x)||p ≤ εF and ||δ ◦ B(x)||p ≤ εB. Thus, the feasible region of the

adversarial perturbation δ is not an `p ball, which makes computing the projection Pε

computationally challenging in high-dimensional settings. To address this challenge, we

split the dual-perturbation attack into two individual processes in each iteration, one for the

adversarial perturbation in the foreground and the other for the background, and then merge

these two perturbations when computing the gradients, like a standard PGD attack.

97

We use the following steps to solve the optimization problem of dual-perturbation attacks:

1. Initialization. Start with a random initial starting point δ(0). To do this, randomly

sample a data point δ(0)
F in `p ball ∆(εF) and δ(0)

B in ∆(εB). Then, δ(0) can be obtained

by using δ(0) = δ
(0)
F ◦ F(x) + δ

(0)
B ◦ B(x). This ensures that the initial perturbation is

feasible in both foreground and background.

2. Split. At the k-th iteration, split the perturbation δ(k) into δ(k)
F for foreground and δ(k)

B

for background:
δ

(k)
F = δ(k) ◦ F(x)

δ
(k)
B = δ(k) ◦ B(x)

. (6.3)

Then update the foreground and background perturbations separately using the following

rules:
δ

(k+1)
F = Pε(δ(k)

F + αF · gF)

δ
(k+1)
B = Pε(δ(k)

B + αB · gB)

(6.4)

where gF is the update that corresponds to the normalized steepest descent constrained

in the foreground, and gB for the background. Specifically,

gF = G(F(x) ◦ ∇δ(k){L(hθ(x+ δ(k)), y)) + λ · S

(
x+ δ(k)

)
}

gB = G(B(x) ◦ ∇δ(k){L(hθ(x+ δ(k)), y)) + λ · S
(
x+ δ(k)

)
}

(6.5)

where αF is the step size for foreground, and αB is the step size for background.

3. Merge. At the end of the k-th iteration, merge the perturbations obtained in the last

step by using

δ(k+1) = δ
(k+1)
F + δ

(k+1)
B . (6.6)

98

δ(k+1) is further used to derive the update for the normalized steepest descent at the

next iteration.

4. Return to step 2 or terminate after either a fixed number of iterations.

6.3 Defense Approach

Once we are able to compute the dual-perturbation attack, we can incorporate it into

conventional adversarial training paradigms for defense, as it has been demonstrated that

adversarial training is highly effective in designing classification models that are robust to a

given attack. Specifically, we replace the PGD attack in the adversarial training framework

proposed by [71], with the proposed dual-perturbation attack. We term this approach

AT-Dual, which aims to solve the following optimization problem:

min
θ

1

|D|
∑
x,y∈D

max
||δ◦F(x)||p≤εF ,
||δ◦B(x)||p≤εB

L (hθ(x+ δ), y) + λ · S (x+ δ) . (6.7)

Note that AT-Dual needs to identify background and foreground for any input when solving the

inner maximization problems in Eq. (6.7) at training time. At prediction time, our approaches

classify test samples like any standard classifiers, which is independent of the semantic

partitions so as to close the backdoors to attacks on object detection approaches [123].

99

6.4 Experimental Results

6.4.1 Experimental Setup

Datasets. We conducted the experiments on the following three datasets (detailed in

Appendix B.2): The first is Segment-6 [17], which are images with 32× 32 pixels obtained

by pre-processing the Microsoft COCO dataset [62] to make it compatible with image

classification tasks. We directly used the semantic segmentation based foreground masks

provided in this dataset. Our second dataset is STL-10, a subset that contains images with

96×96 pixels. Our third dataset is ImageNet-10, a 10-class subset of the ImageNet dataset [21].

We cropped all its images to be with 224× 224 pixels. For STL-10 and ImageNet-10, we used

fixation prediction to identify foreground and background as described in Section 6.2.

Baselines. We consider PGD attack as a baseline adversarial model, and Adversarial

Training with PGD Attacks as a baseline robust classifier. We also consider a classifier

trained on non-adversarial data (henceforth, Clean). Additionally, we consider Randomized

Smoothing [16] and defer corresponding results to Appendix B.9.

Evaluation Metrics. We use two standard evaluation metrics for both attacks and defenses:

1) accuracy of prediction on clean test data where no adversarial attacks were attempted. 2)

adversarial accuracy, which is accuracy when adversarial inputs are used in place of clean

inputs.

Throughout our evaluation, we used both `2 and `∞ norms to measure the magnitude of

added adversarial perturbations. We only present experimental results of the Clean model

100

and classification models that are trained to be robust to `2 norm attacks using the ImageNet-

10 dataset. The results for `∞ norm and other datasets are similar and deferred to the

Appendix B.

In the following experiments, all classifiers were trained with 20 epochs on a ResNet34

model [38] pre-trained on ImageNet and with a customized final fully connected layer.

Specifically, we trained AT-PGD by using 50 steps of `2 PGD attack with ε = 2.0, and

AT-Dual by using 50 steps of `2 dual-perturbation attack with {εF , εB, λ} = {2.0, 20.0, 0.0}

at each training epoch. At test time, we used both `2 PGD and dual-perturbation attacks

with 100 steps to evaluate robustness.

6.4.2 Saliency Analysis of Dual-Perturbation Adversarial Examples

We begin by considering a natural question: is our particular distinction between foreground

and background actually consistent with cognitive salience? In fact, this gives rise to two

distinct considerations: 1) whether foreground as we identify it is in fact significantly more

salient than the background, and 2) if so, whether background becomes significantly more

salient as a result of our dual-perturbation attacks. We answer both of these questions by

appealing to DeepGaze II [55] to compute the foreground score (FS) of dual-perturbation

examples and using the accuracy of different classifiers on dual-perturbation examples with

different background salience. Concretely, DeepGaze II outputs predicted pixel-level density

of human fixations on an image with the total density over the entire image summing to 1.

Our measure of relative salience of the foreground, the foreground score (FS), is defined as

FS =
∑

i∈{k|F(x)k 6=0} si, where si is the saliency score produced by DeepGaze II for pixel i of

image x. Since foreground, as a fraction of the image, tends to be around 50-60%, a score

significantly higher than 0.5 indicates that predicted human fixation is relatively localized to

the foreground.

101

= 0 = 0.005 = 0.01
Adv.Clean

0.2

0.4

0.6

0.8

1.0

Fo
re

gr
ou

nd
 sc

or
e

= 0 = 0.005 = 0.01
Adv.AT-PGD

= 0 = 0.005 = 0.01
Adv.AT-Dual

ImageNet-10 | 2 dual-perturbation

0.0 0.005 0.01
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | 2 dual-perturbation
Clean
AT-PGD

AT-Dual

Figure 6.3: Saliency analysis. Dual-perturbation attacks are performed by using {εF , εB} =
{2.0, 20.0} and a variety of λ displayed in the figure. Left: foreground scores of dual-
perturbation examples in response to different classifiers. Right: accuracy of classifiers on
dual-perturbation examples with salience control.

Dual-per turbation
Example ()

Dual-per turbation
Example ()

Or iginal
Sample

Foreground
Mask

Figure 6.4: An illustration of dual-perturbation attacks. Adversarial examples are with
large `∞ perturbations on the background (εB = 20/255) and small `∞ perturbations on the
foreground (εF = 4/255). A parameter λ is used to control background salience explicitly. A
larger λ results in less salient background under the same magnititude of perturbation.

Figure 6.3 presents the answer to both of the questions above. First, observe that in Figure 6.3,

FS (vertical axis) is typically well above 0.5, and in most cases above 0.8, for all attacks.

Second, this is true whether we attack the Clean model, or either AT-PGD or AT-Dual robust

models. Particularly noteworthy, however, is the impact that the parameter λ has on the FS,

especially when robust classifiers are employed. Recall that λ reflects the relative importance

of salience in generating adversarial examples, with larger values forcing our approach to

pay more attention to preserving unsuspiciousness of background relative to foreground. As

we increase λ, we note higher FS, i.e., lower background salience (again, Figure 6.3, left).

102

0 1.0 2.0 3.0 4.0
F

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | 2 dual-perturbation
Clean AT-PGD AT-Dual

0 10.0 20.0 30.0 40.0
B

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | 2 dual-perturbation
Clean AT-PGD AT-Dual

0 1.0 2.0 3.0 4.0
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | 2 PGD
Clean AT-PGD AT-Dual

Figure 6.5: Robustness to white-box `2 attacks on ImageNet-10. Left: dual-perturbation
attacks with different foreground distortions. εB is fixed to be 20.0 and λ = 0.005. Middle:
dual-perturbation attacks with different background distortions. εF is fixed to be 2.0 and
λ = 0.005. Right: PGD attacks.

Figure 6.4 offers a visual illustration of this effect. As significantly, Figure 6.3 (right) shows

that moderately increasing λ does not significantly reduce the effectiveness of the attack on

the Clean and AT-Dual classifiers.

6.4.3 Robustness against Non-Salient Adversarial Examples

Next, we evaluate the effectiveness of dual-perturbation attacks against state-of-the-art

robust learning methods, as well as the effectiveness of adversarial training that uses dual-

perturbation attacks for generating adversarial examples. We begin by considering white-box

attacks, and subsequently evaluate transferability.

The results for white-box attacks are presented in Figure 6.5. First, consider the dual-

perturbation attacks (left and middle plots). Note that in all cases these attacks are highly

successful against the baseline robust classifier (AT-PGD); indeed, even relatively small

levels of foreground noise yield near-zero accuracy when accompanied by sufficiently large

background perturbations. For example, when the perturbation to the foreground is εF = 2.0

and background perturbation is εB = 20.0, AT-PGD achieves robust accuracy around 20%.

In contrast, AT-Dual remains significantly more robust, with an improvement of up to 30%

103

Clean
AT-PGD

AT-Dual
Source

Clean

AT-PGD

AT-Dual

Ta
rg

et
0.000 0.430 0.750

0.930 0.220 0.520

0.870 0.780 0.480

ImageNet-10 | 2 dual-perturbation

0.0

0.2

0.4

0.6

0.8

Accuracy

Clean
AT-PGD

AT-Dual
Source

Clean

AT-PGD

AT-Dual

Ta
rg

et

0.010 0.870 0.940

0.940 0.760 0.890

0.870 0.840 0.750

ImageNet-10 | 2 PGD

0.2

0.4

0.6

0.8
Accuracy

Figure 6.6: Robustness against adversarial examples transferred from other models on
ImageNet-10. Left: `2 dual-perturbation attacks performed by using {εF , εB, λ} =
{2.0, 20.0, 0.005} on different source models. Right: `2 PGD attacks with ε = 2.0 on
different source models.

compared to the baseline. Second, consider the standard PGD attacks (right plot). It can be

observed that all of the robust models are successful against the `2 PGD attacks. However,

our defense exhibit moderately higher robustness than the baselines under large distortions

of PGD attacks, without sacrificing much in accuracy on clean data. For example, when the

perturbation of the `2 PGD attack is above ε = 3.0, AT-Dual can achieve 20% more accuracy.

Next, we measure the transferability of adversarial examples among different classification

models. To do this, we first produced adversarial examples by using `2 PGD attack or

dual-perturbation attack on a source model. Then, we used these examples to evaluate the

performance of an independent target model, where a higher prediction accuracy means weaker

transferability. The results are presented in Figure 6.6. The first observation is that dual-

perturbation attacks exhibit significantly better transferability than the conventional PGD

attacks (transferability is up to 40% better for dual-perturbation attacks). Second, we can

observe that when AT-Dual is used as the target (i.e., defending by adversarial training with

dual-perturbation examples), these are typically resistant to adversarial examples generated

104

against either the clean model, or against AT-PGD. This observation obtains even when we

use PGD to generate adversarial examples.

0 10.0 20.0 30.0 40.0
B

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | 2 dual-perturbation
Clean AT-PGD AT-Dual

Figure 6.7: Robustness to white-box background attacks on ImageNet-10. εF is fixed to be
0.0 and λ = 0.005.

In addition, we evaluate robustness of classifiers against background perturbations. To do

this, we fixed εF = 0, and only background perturbations are allowed to be added to an image.

The results are shown in Figure 6.7. We can observe significantly increased robustness of

our defense to background perturbation, up to 25% than AT-PGD and 50% than the Clean

classifier.

6.4.4 Generalizability of Defense

It has been observed that models robust against lp-norm-bounded attacks for one value of p

can be fragile when facing attacks with a different norm lp′ [98].

105

0/255 2/255 4/255 6/255 8/255
0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

ImageNet-10 | PGD
Clean
AT-PGD

AT-Dual

0/255 2/255 4/255 6/255 8/255
F

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | dual-perturbation
Clean AT-PGD AT-Dual

0/255 10/255 20/255 30/255 40/255
B

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | dual-perturbation
Clean AT-PGD AT-Dual

0% 2.5% 5% 7.5% 10%
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | 0 JSMA
Clean
AT-PGD

AT-Dual

Figure 6.8: Robustness to additional white-box attacks on ImageNet-10. Top left: 20 steps
of `∞ PGD attacks. Top right: 20 steps of `∞ dual-perturbation attacks with different
foreground distortions. εB is fixed to be 20/255 and λ = 0.005. Bottom left: 20 steps of `∞
dual-perturbation attacks with different background distortions. εF is fixed to be 4/255 and
λ = 0.005. Bottom right: `0 JSMA attacks.

Here, our final goal is to present evidence that the approaches for defense based on dual-

perturbation attacks remain relatively robust even when faced with attacks generated using

different norms. Here, we show this when our models are trained using the l2-bounded attacks,

and evaluated against other attacks using other norms. The results are presented in Figure 6.8.

We consider three alternative attacks: 1) PGD using the l∞-bounded perturbations, as in

[71] (top left in Figure 6.8) 2) dual-perturbation attacks with l∞-norm bounds (top right

and bottom left in Figure 6.8), and 3) JSMA, a l0-bounded attack [85] (bottom right in

Figure 6.8). We additionally considered l2 attacks, per Carlini and Wagner [13], but find that

106

all of the robust models, whether based on PGD or dual-perturbation attacks, are successful

against these.

Our first observation is that AT-Dual is significantly more robust to l∞-bounded PGD attacks

than the adversarial training approach in which adversarial examples are generated using l2-

bounded PGD attacks (Figure 6.8 (top left)). Consequently, training with dual-perturbation

attacks already exhibits better ability to generalize to other attacks compared to conventional

adversarial training.

The gap between dual-perturbation-based adversarial training and standard adversarial

training is even more significant when we consider l∞ dual-perturbation attacks (top right and

bottom left figures of Figure 6.8). Here, we see that robustness of PGD-based adversarially

trained model is only marginally better than that of a clean model under large distortions

(e.g., when εB ≥ 20/255 in the bottom left plot of Figure 6.8), whereas AT-Dual remains

relatively robust.

Finally, considering JSMA attacks (see Figure 6.8 (right)), we can observe that both AT-Dual

and AT-PGD remain relatively robust. However, a deeper look at Figure 6.8 (bottom right)

reveals that compared to AT-PGD, AT-Dual exhibit moderately higher robustness than the

baselines under large distortions of JSMA attacks. Overall, in all of the cases, the model

made robust using dual-perturbation attacks remains quite robust even as we evaluate against

a different attack, using a different norm.

6.4.5 Analysis of Defense

Finally, we conduct a qualitative study of adversarial robustness by investigating which pixel-

level features are important for different classifiers at prediction time. To do this, we visualize

the loss gradient of different classifiers with respect to pixels of the same non-adversarial

107

inputs (as introduced in [113]), shown in Figure 6.1. Our first observation is that the

gradients in response to adversarially robust classifiers (AT-PGD and AT-Dual) align well

with human perception, while a standard training model (Clean) results in a noisy gradient

for the input images. Second, compared to adversarial training with the conventional PGD

attack (AT-PGD), the loss gradient of AT-Dual provides significantly better alignment with

sharper foreground edges and less noisy background. This indicates that adversarial training

with the dual-pertubation attack can extract more perceptual semantics from an input image

and is less dependent on the background at prediction time. In other words, our defense

approach can extract highly robust and semantically meaningful features, which contribute

to its robustness to a variety of attacks.

6.5 Conclusion

In this chapter, we proposed the dual-perturbation attack, a novel threat model that produces

unsuspicious adversarial examples by leveraging the cognitive distinction between image

foreground and background. As we have shown, our attack can defeat all state-of-the-

art defenses. By contrast, the proposed defense approaches using our attack model can

significantly improve robustness against unsuspicious adversarial examples, with relatively

small performance degradation on non-adversarial data. In addition, our defense approaches

can achieve comparable to, or better robustness than the alternatives in the face of traditional

attacks.

Our threat model and defense motivate several new research questions. The first is whether

there are more effective methods to identify foreground of images. Second, can we further

improve robustness to dual-perturbation attacks? Finally, while we provide the first principled

108

approach for quantifying suspiciousness, there may be effective alternative approaches for

doing so.

109

Part III

Robust Detection Pipeline

110

Chapter 7

Finding Needles in a Moving Haystack:

Prioritizing Alerts with Adversarial

Reinforcement Learning

In this chapter, we focus on deciding which of a large number of alerts to choose for further

investigation—often a necessary step in the detection pipeline. One of the major challenges

in using detection systems in practice is in dealing with an overwhelming number of alerts

that are triggered by normal behavior (the so-called false positives), obscuring alerts resulting

from actual malicious activity. While numerous methods for reducing the scope of this

issue have been proposed, ultimately one must still decide how to prioritize which alerts to

investigate, and most existing prioritization methods are heuristic, for example, based on

suspiciousness or priority scores. We introduce a novel approach for computing a policy for

prioritizing alerts using adversarial reinforcement learning. Our approach assumes that the

attacker knows the full state of the detection system and the defender’s alert prioritization

111

policy, and will dynamically choose an optimal attack. The first step of our approach is to

capture the interaction between the defender and attacker in a game theoretic model. To

tackle the computational complexity of solving this game to obtain a dynamic stochastic

alert prioritization policy, we propose an adversarial reinforcement learning framework. In

this framework, we use neural reinforcement learning to compute best response policies for

both the defender and the adversary to an arbitrary stochastic policy of the other. We then

use these in a double-oracle framework to obtain an approximate equilibrium of the game,

which in turn yields a robust stochastic policy for the defender. Extensive experiments using

case studies in fraud and intrusion detection demonstrate that our approach is effective in

creating robust alert prioritization policies.

7.1 Overview

Building on the observation of the fundamental trade-off between false alert and attack

detection rate, in this chapter, we propose a novel computational approach for robust alert

prioritization to address the challenge. Our approach assumes a strong attacker who knows

the full state of the detection environment including which alerts have been triggered, which

have been investigated in the past, and even the defender’s policy. We also assumed that

the adversary is capable of finding and utilizing a near optimal attack strategy against the

defender policy based on his knowledge of the system and defending policy. To defend against

such a strong attacker, we propose to compute the optimal stochastic dynamic defender

policy that chooses the alerts to investigate as a function of the observable state, and that is

robust to our threat model. At the core of our technical approach is a combination of game

theory with adversarial reinforcement learning (ARL). Specifically, we model the problem

of robust alert prioritization as a game in which the defender chooses its stochastic and

dynamic policy for prioritizing alerts, while the attacker chooses which attacks to execute,

112

also dynamically with full knowledge of the system state. Our computational approach first

uses neural reinforcement learning to compute approximately optimal policies for either player

in response to a fixed stochastic policy of their counterpart. It then uses these (approximate)

best response oracles as a part of a double-oracle framework, which iterates two steps: 1)

solve a game involving a restricted set of policies by both players, and 2) augment the policy

sets by calling the best response oracle for each player. Note that our approach is completely

orthogonal to methods for reducing the number of false positive alerts, such as alert correlation,

and is meant to be used in combination with these, rather than as an alternative. In particular,

we can first apply alert correlation to obtain a reduced set of alerts, and subsequently use our

approach for selecting which alerts to investigate. Since alert correlation cannot be overly

aggressive in order to ensure that we still capture actual attacks, the number of alerts often

still significantly exceeds the investigation budget.

We evaluate our approach experimentally in two application domains: intrusion detection,

where we use the Suricata open-source intrusion-detection system (IDS) with a network IDS

dataset, and fraud detection, with a detector learned from data using machine learning. In

both settings, we show that our approach is significantly more effective than alternatives

with respect to our threat model. Furthermore, we demonstrate that our approach remains

highly effective, and better than baseline alternatives in nearly all cases, even when certain

assumptions of our threat model are violated.

7.2 System Model

As displayed in Figure 7.1, our system is partitioned into four major components: a group of

regular users (RU), an adversary (also called attacker), a defender, and an attack detection

environment (ADE).

113

Adversary Attack Detection Environment

System State Container

Alert Generator

2. Observation

1. Benign Data

…

Defender

4. Observation

RU RU RU

State Variable

Defense
Oracle

Alert
Analyzer

Investigation Action

Attack

Oracle

Attack
Generator

Attack Action

Figure 7.1: System model. The Attack Oracle computes the attacker’s policy for executing
attacks, which is implemented by the Attack Generator and then triggers alerts observed
by the Attack Detection Environment. The Defense Oracle computes the defender’s alert
prioritization policy, which is implemented by the Alert Analyzer.

The regular users (RU) are the authorized users of a system. In contrast, the adversary

is a sophisticated actor who attacks the target computer system. The attack detection

environment (ADE) models the combination of the software artifact that is responsible for

monitoring the system (e.g., network traffic, files, emails) and raising alerts for observed

suspicious behavior, as well as relevant system state. System state includes attacks that have

been executed (unknown to the defender), and alerts that have been investigated (known to

both the attacker and defender). Crucially, the alerts triggered in the ADE may correspond

either to behavior of the normal users RU, or to malicious behavior (attacks) by the adversary.

We divide time into a series of discrete time periods. The defender is limited in how many

alerts it can investigate in each time period and must select a small subset of alerts for

investigation, while the adversary is limited in how many attacks it executes in each time

period. The full system operates as follows for a representative time period (see again the

schematic in Figure 7.1):

1. Benign alerts are generated by the ADE.

2. These alerts, and the remaining ADE system state (such as which alerts from past time

periods have not yet been investigated, but could be investigated in the future), are

observed by the attacker, who executes a collection of attacks.

114

Table 7.1: Notation summary.

Notation Interpretation
Constants and functions

A Types of attacks
T Types of alerts
Ct Cost of investigating an alert of type t ∈ T
B Defender’s budget
Ea Cost of mounting an attack of type a ∈ A
D Adversary’s budget
Pa,t(n) Probability that an attack a ∈ A raises n alerts of type

t ∈ T
Ft Probability distribution of false alerts of type t ∈ T
La Loss inflicted by an undetected attack a ∈ A
τ Temporal discounting factor

State variables (Time slot k ∈ N)
N

(k)
t Number of uninvestigated alerts of type t ∈ T

M
(k)
a Indicator of whether an attack of type a ∈ A was mounted

S
(k)
a,t Number of alerts of type t ∈ T raised due to attack a ∈ A
R

(k)
+1 Reward obtained by the defender

Actions, policies, and strategies
αv Action of player v ∈ {−1,+1}
πv Policy (i.e., pure strategy) of player v ∈ {−1,+1}
σv Mixed strategy of player v ∈ {−1,+1}

3. The attacks trigger new alerts. These are arbitrarily mixed into the full collection of

alerts, which is then observed by the defender.

4. The defender chooses a subset of alerts to investigate. The ADE state is updated

accordingly, and the process repeats in the next time period.

Next, we describe our model of the alert detection environment, our threat model, and our

defender model. The full list of notation that we use in the model is presented in Table 7.1.

115

7.2.1 Attack Detection Environment (ADE) Model

Our model of the attack detection environment (ADE) captures a broad array of detection

settings, including credit card fraud, intrusion, and malware detection. In this model, the

ADE is composed of two parts: an alert generator (such as an intrusion detection system,

like Suricata) and system state.

An alert generator produces a sequence of alerts in each time period. We aggregate alerts

based on a finite predefined set of types T . For example, an alert type may be based on the

application layer it was generated for (HTTP, DNS, etc), port number or range, destination

IP address, and any other information that’s informative for determining the nature and

relative priority of alerts. We can also define alert types for meaningful sequences of alerts.

Indeed, the notion of alert types is entirely without loss of generality—we can define each

type to be a unique sequence of alerts, for example—but in practice it is useful (indeed,

crucial for scalability) to aggregate semantically similar alerts.

At the end of each time period the system generates a collection of alert counts for each alert

type t ∈ T . We assume that normal or benign behavior generates alerts according to a known

distribution F , where Ft(n) is the marginal probability that n alerts of type t are generated.

We also refer to this as the distribution of false alarms, since if the defender were omniscient,

they would never trigger such alerts. Note that in practice it is not difficult to obtain the

distribution F . Specifically, we can use past logs of all alerts over some time period to learn

the distribution F . Since the vast majority of alerts in real systems are in fact false positives,

any unidentified true positives in the logs will have a negligible impact.8

8If we are concerned about these poisoning the data, we can use robust estimation approaches to mitigate
the issue [115].

116

We use three matrices to represent the state of ADE at time period k. The first represents

the counts of alerts not yet investigated, grouped by type. Formally, we denote this structure

by N(k) = {N (k)
t }t∈T , where N

(k)
t is the number of alerts of type t ∈ T that were raised but

have not been investigated by the defender. This is observed by both the defender and the

attacker. The second describes which attacks have been executed by the adversary; formally,

M(k) = {M (k)
a }a∈A, where M (k)

a is a binary indicator where M (k)
a = 1 iff the attack a was

executed. This matrix is only observed by the attacker. Finally, we represent which alerts are

raised specifically due to each attack. Formally, S(k) = {S(k)
a,t }a∈A,t∈T , where S

(k)
a,t represents

the number of alerts of type t ∈ T raised due to attack a. This is also only observed by the

attacker.

7.2.2 Threat Model

Adversary’s Knowledge. We consider a strong attacker who is capable of observing

the current state of the ADE. This obviates the need to make specific (and potentially

erroneous) assumptions about information actually available to the attacker about system

state; in practice, given the zero-sum nature of the encounter we consider below, having a less

informed attacker will only improve the defender’s utility. Additionally, the attacker knows

the randomized policy used by the defender for choosing which alerts to inspect (more on

this below), and inspection decisions in previous rounds, but not the inspection decision in

the current round (which happens after the attack).

Adversary’s Capabilities. In each time period, the adversary can execute multiple actions

a from a set of possible (representative) actions A.9 Each attack action a ∈ A stochastically

triggers alerts according to the probability distribution P , where Pa,t(n) is the marginal
9In practice, actions in A correspond to equivalence classes of attacks; for example, a ∈ A could be a

representative denial-of-service attack.

117

probability that action a generates n alerts of type t. These probabilities can be learned by

replaying known attack actions through actual detectors (as we do in the experiments below),

ideally as a part of a full dataset which includes a mix of benign and malicious behavior.

Commonly, alerts are generated deterministically for given attack actions; it is evident that

our model admits this as a special case (i.e., Pa,t ∈ {0, 1}). However, our generality allows us

to handle important cases where alerts are, indeed, stochastic. For example, consider a Port

Scan attack (as a part of a reconnaissance step). Port scan alert rules commonly consider the

number of certain kinds of packets (such as ICMP packets) observed over a small time period

(say, several seconds), and raise an alert if this number exceeds a predefined threshold. The

number of such packets, of course, also depends on background traffic, which is stochastic, so

that the triggering of the alert is also stochastic if the attack is sufficiently stealthy to avoid

exceeding such a threshold in isolation.

Let Ea be the cost for executing an attack a ∈ A. One method to estimate these costs is

to examine the difficulty of executing the exploit based on the CVSS complexity metrics.

The main limitation to the attacker capabilities is a budget constraint D that limits how

many, and which combination of, attacks can be executed.10 While it is difficult to reliably

estimate this budget, our case studies in Section 7.5 demonstrate that our approach is robust

to uncertainty about this parameter. Specifically, any attack decision α−1 with α−1,a the

probability that the attack a is executed by the attacker in a given time period, must abide

by the following constraint: ∑
a∈A

α−1,aEa ≤ D. (7.1)

10Note that this easily admits the possibility of multiple attackers, where D becomes the total budget of
all attackers. This case is equivalent to assuming that attackers coordinate. This is a safe assumption, since
if they do not, the defender’s utility can only increase.

118

For our purposes, it is useful to represent the attacker as consisting of two modules: Attack

Oracle and Attack Generator, as seen in Figure 7.1. The attack oracle runs a policy, which

maps observed the state of the ADE to attacks that are executed. In each time period, after

observing ADE state, the attack oracle chooses attack actions, which are then executed by

the attack generator, triggering alerts and thereby modifying the state of the ADE. Below we

present our approach for approximating the optimal attack policies.

Adversary’s Goals. The adversary aims to successfully execute attacks. Success entails

avoiding being detection by the defender, which only happens if alerts associated with an

attack are inspected. Thus, if an attack triggers a collection of alerts, but none of these are

chosen by the defender to be inspected in the current round, the attack succeeds. Different

attacks, however, entail different consequences and, therefore, different rewards to the attacker

(and loss to the defender). As a result, the adversary will ultimately need to balance rewards

to be gained from successful attacks and the likelihood of being detected.

7.2.3 Defender Model

Defender’s Knowledge. Unlike the adversary, the defender can only partially observe the

state of the ADE. In particular, the defender only observes N(k), the numbers of remaining

uninvestigated alerts, grouped by alert type (since clearly the defender cannot directly observe

actually attacks). In addition, we assume that the defender knows the attack budget and

costs of (representative) attacks. In our experiments, we study the impact of relaxing this

assumption (see Section 7.5), and provide practical guidance on this issue.

Defender’s Capabilities. The defender chooses subsets of alerts in N(k) to investigate in

each time period k. This choice is constrained by the defender’s budget, which in practice

can translate to time the defender has to investigate alerts. Since different types of alerts may

119

need different amounts of time to investigate, or more generally, incur varying investigation

costs, the budget constraint is on the total cost of investigating chosen alerts. Formally, let

Ct be the investigation cost of an alert of type t, and let α(k)
+1,t be the number of alerts of type

t chosen to be investigated by the defender in period k. Then the budget constraint takes

the following mathematical form:

∑
t∈T

Ctα
(k)
+1,t ≤ B. (7.2)

An additional constraint imposed by the problem definition is that the defender can only

investigate existing alerts:

∀t ∈ T : α
(k)
+1,t ≤ N

(k)
t . (7.3)

Just as with the adversary, it is useful to represent the defender as consisting of two modules:

Defense Oracle and Alert Analyzer, as shown in Figure 7.1. The defense oracle runs a policy,

which maps partially observed state of the ADE to the choice of a subset of alerts to be

investigated. In each time period, after observing the set of as yet uninvestigated alerts, the

defense oracle chooses which alerts to investigate, and this policy is then implemented by the

alert analyzer, which thereby modifies ADE state (marking the selected alerts as having been

investigated). Below we present our approach for approximately computing optimal defense

policies that are robust to attacks as defined in our threat model above.

Defender’s Goals. The goal of the defender is to guard a computer system or network

by detecting attacks through alert inspection. To achieve its goal, the defender develops

an investigation policy to allocate its limited budget to investigation activities in order to

minimize consequences of successful attacks, where we assume that an attack will fail to

accomplish its primary objectives if the alerts it causes the ADE to emit are investigated in

a timely manner.

120

7.2.4 An Illustrative Example

Since our system is built on top of an abstracted model of alert investigation, the results are

generally applicable to a wide range of real-world problems. We will use intrusion detection

as an illustrative example in this section. Port Scan reconnaissance attack is one of the most

common initial steps in remote exploitation and is a common occurrence faced by many

enterprise IT professionals. In a Suricata IDS system, each alert item has different levels

of categorization. For example, at the lowest layer, the port scan may trigger two types

of alert, 1) Httprecon Web Server Fingerprint Scan, and 2) ET SCAN NMAP -sO. At a

higher level, these alerts can be categorized into attempted-recon (since both reflect potential

reconnaissance efforts by the attacker), as is the case in the Emerging Threats Ruleset of

Suricata. A defender can choose different granularities of attack categorization to map the

IDS alert types into the abstracted types in our proposed model based on individual needs.

Besides categorization, the defender can also make use of other attributes in the IDS alerts to

aid in abstracted type assignment. For example, a port scan on the enterprise file server can

be assigned to the abstracted type of high-risk-recon, while a port scan on employee desktop

can be assigned to attempted-recon.

In addition to the alerts corresponding to an actual attack action, normal user behavior can

generate false positive alerts. For example, a user who is scraping the web for weather data

monitoring may trigger the ET POLICY POSSIBLE Web Crawl using Curl, which is grouped

into the attempted-recon type by the same Emerging Threats Suricata ruleset. Leveraging

the proposed game-theoretic model on these abstracted alerts, it is possible for the defender

to devise an optimal defense policy for a wide range of alert applications even in the face of

possible false positives.

121

7.3 Game Theoretic Model of Robust Alert Prioritiza-

tion

We now turn to the proposed approach for robust alert prioritization. We model the

interaction between the defender and attacker as a zero-sum game, which allows us to define

and subsequently compute robust stochastic inspection policies for the defender. In this

section, we formally describe the game model. We then present the computational approach

for solving it in Section 7.4.

7.3.1 Strategies

The game has two players: the defender (denoted by v = +1) and the adversary (denoted

by v = −1). Each player’s strategies are policies, that is, mappings from an observed ADE

state to the probability distribution over actions to take in that state. In a given state, the

defender chooses a subset of alerts to investigate; thus, the defender’s set of possible actions

is the set of all alert subsets that satisfy the constraints (7.2) and (7.3). The attacker’s

choices in a given state correspond to subsets of actions A to take. Consequently, the set

of adversary’s actions is the set of all subsets of attacks satisfying constraint (7.1). Note

that the combinatorial nature of both players’ action spaces and of the state space makes

even representing deterministic policies non-trivial; we will deal with this issue in Section 7.4.

Moreover, we will consider stochastic policies. An equivalent way to represent stochastic

policies is as probability distributions over deterministic policies, which map observed state

to a particular action (subset of alerts for the defender, subset of attacks for the adversary).

122

Henceforth, we call deterministic policies of the players their pure strategies and stochastic

policies are termed mixed strategies, following standard terminology in game theory.11

Let π−1 denote the attacker’s policy, which maps the fully observed state of ADE, O(k)
−1 =

〈N(k),M(k),S(k)〉, to a subset of attacks. Let α(k)
−1 = π−1(O

(k)
−1), where α(k)

−1 = {α(k)
−1,a}a∈A

are (for the moment) binary indicators with α
(k)
−1,a = 1 iff an action a ∈ A is chosen by

the attacker. In other words, the vector α(k)
−1 represents the choice of actions made by the

adversary. Similarly, π+1 denotes the defender’s policy, which maps the portion of ADE state

O
(k)
+1 = N(k) observed by the defender to the number of alerts of each type to investigate.

Analogously to the attacker, α(k)
+1 = π+1(O

(k)
+1), where α(k)

+1 = {α(k)
+1,t}t∈T are the counts of

alerts chosen to be investigated for each type t. Now, notice that all alerts of type t are

equivalent by definition; consequently, it makes no difference to the defender which of these

are chosen, and we therefore choose the fraction α
(k)
+1,t

N
(k)
t

of alerts of type t uniformly at random.

Let Πv be player v’s set of pure strategies, where each pure strategy πv ∈ Πv is a policy

as defined above. A mixed strategy of player v is then a probability distribution σv =

{σv(πv)}πv∈Πv over the player’s pure strategies Πv where σv(πv) is the probability that

player v uses policy πv. Since a mixed strategy σv is a distribution over a finite set of pure

strategies, it satisfies 0 ≤ σv(πv) ≤ 1 and
∑
πv∈Πv

σv(πv) = 1. Let Σv denote the set of all

mixed strategies of player v.
11At decision time, players can sample from their respective mixed strategies in each round, thereby

determining their decisions in that round. We assume that while the defender’s mixed strategy is known to
the attacker, the realizations, or samples, of deterministic policies drawn in each round are not observed by
the attacker; for example, the sampling process can take place after the entire set of alerts in that round
are observed. Note that if we re-sample independently in each round, the attacker learns no additional
information about the defender’s policy from past rounds.

123

7.3.2 Utilities

For any strategy profile of the two players, (πv,π−v), we denote the utility of each player

v by Uv(πv,π−v), v ∈ {+1,−1}. Since our game is zero-sum,
∑

v∈{+1,−1} Uv(πv,π−v) = 0.

When player v chooses pure strategy πv ∈ Πv and its opponent −v plays mixed strategy

σ−v ∈ Σ−v, then the expected utility of v is

Uv(πv,σ−v) =
∑

π−v∈Π−v

σ−v(π−v)Uv(πv,π−v). (7.4)

Similarly, the expected utility of player v when it chooses the mixed strategy σv ∈ Σv and

its opponent play the mixed strategy σ−v ∈ Σ−v is

Uv(σv,σ−v) =
∑
πv∈Πv

σ−v(πv)Uv(πv,σ−v). (7.5)

Next, we describe how to compute the utility of player v, Uv(πv,π−v), when its policy is πv

and the opponent’s policy π−v are given.

Consider arbitrary pure strategies of both players, π+1 and π−1. The game begins with an

initial system state 〈N (0),M (0),S(0)〉 = 〈0,0,0〉. The system state is then updated in each

time period k as follows:

1. Alert investigation. The defender first investigates a subset of alerts produced thus

far. Specifically, the defender chooses the number of alerts of each type to investigate

{α(k)
+1,t}t∈T according to its policy π+1(O

(k)
+1) given current observed state O(k)

+1 . For

each attack a ∈ A, let M̃ (k)
a be an indicator of whether attack a has been executed by

the beginning of time period k, but has not been investigated. If M (k)
a = 0, we have

M̃
(k)
a = 0 as no attack a ∈ A has been executed. If M (k)

a = 1, then M̃
(k)
a = 1 with

124

probability

p(k)
a =

∏
t∈T

{
C(N

(k)
t − S

(k)
a,t , α

(k)
+1,t)

C(N
(k)
t , α

(k)
+1,t)

}
, (7.6)

where C(n, r) is the number of possible combinations of r objects from a set of n objects.

p
(k)
a is then the probability that attack a is not detected by the defender.

2. Attack generation. The adversary produces attacks by executing actions according

to its policy {α(k)
−1,a}a∈A = π−1(O

(k)
−1) given the fully observed ADE state O(k)

−1 . Then

M
(k+1)
a = α

(k)
−1,a for each a ∈ A.

3. Triggering alerts. Each attack a ∈ A can trigger alerts as follows. For each attack

a ∈ A and alert type t ∈ T , if M (k+1)
a = 1, then S(k+1)

a,t = n with probability Pa,t(n) for

n ≥ 0. This probability can be estimated, for example, by feeding inputs which include

representative attacks into an attack detector and observing relative frequencies of alerts

that are triggered. In addition, false alerts are generated according to the distribution

Ft, which we can estimate from data of normal behavior and associated alert counts.

Let f (k)
t be the number of false alerts of type t ∈ T that have been generated. Then

the total number of alerts in the next time period k + 1 is N (k+1)
t = f

(k)
t + S

(k+1)
a,t .

In order to define the reward received by the defender in time period k, we make the following

assumption: if any of the alerts raised by an attack is chosen to be inspected, then the attack

is detected; otherwise, the attack is not detected. Let La be the loss incurred by the defender

when an attack a ∈ A is not detected. Then the reward of the defender obtained in time

period k is

R
(k)
+1 = −

∑
a∈A

La · M̃ (k)
a . (7.7)

For an arbitrary pure strategy profile of the defender and adversary, (π+1,π−1), the defender’s

utility from the game is the expected total discounted sum of the reward accrued in each

125

time period:

U+1(π+1,π−1) = E

[
∞∑
k=0

τ k ·R(k)
+1

]
, (7.8)

where τ ∈ (0, 1) is a temporal discounting factor which implies that future rewards are less

important than current rewards. That is, imminent losses are more important to the defender

than potential future losses. The adversary’s utility is then U−1(π+1,π−1) = −U+1(π+1,π−1).

7.3.3 Solution Concept

Our goal of finding robust alert investigation policies amounts to computing a mixed-strategy

Nash equilibrium (MSNE) of our game by the well-known equivalence between MSNE,

maximin, and minimax solutions in zero-sum games [54]. A mixed-strategy profile (σ∗v ,σ
∗
−v)

of the two players is an MSNE if it satisfies the following condition for all v ∈ {+1,−1}

Uv(σ
∗
v ,σ

∗
−v) ≥ Uv(σv,σ

∗
−v) ∀σv ∈ Σv. (7.9)

That is, each player v chooses a stochastic policy σ∗v that is the best response (is optimal for

v) when its opponent chooses σ∗−v.

126

7.4 Computing Robust Alert Prioritization Policies

7.4.1 Solution Overview

For given sets of policies, Π+1 and Π−1, a standard approach to computing the MSNE of a

zero-sum game is to solve a linear program of the following form:

max U∗v

s.t.
∑
πv∈Πv

Uv(πv,π−v) · σv(πv) ≥ U∗v ,∀π−v ∈ Π−v∑
πv∈Πv

σv(πv) = 1

σv(πv) ≥ 0 ∀πv ∈ Πv

(7.10)

where in our case the optimal solution σ∗+1 yields the robust alert prioritization policy for

the defender. However, using this approach for our problem entails two principal technical

challenges: 1) the space of policies for both players is intractably large, and 2) it is even

intractable to explicitly represent individual policies, since they map a combinatorial set of

states to a combinatorial set of actions for both players.

We propose an adversarial reinforcement learning approach to address these challenges,

which combines a double oracle framework [75] with neural reinforcement learning. The

general double oracle approach is illustrated in Figure 7.2. We start with an arbitrary

small collection of policies for both players, (Π+1,Π−1), and solve the linear program (7.10),

obtaining provisional equilibrium mixed strategies (σ+1,σ−1) of the restricted game. Next, we

query the attack oracle to compute the adversary’s best response π−1(σ+1) to the defender’s

equilibrium mixed strategy σ+1, and, similarly, query the defense oracle to compute the

defender’s best response π+1(σ−1) to the adversary’s equilibrium mixed strategy σ−1. The

best response policies are then added to the policy sets (Π+1,Π−1) of the players, and we then

127

Defense Oracle

Attack Oracle

StopNo

Yes

Policy
Container

LP Optimizer
At least one best

response
improves result

Figure 7.2: The game solver based on the double oracle algorithm.

re-solve the linear program and repeat the process. The process stops when neither player’s

best response policy yields appreciable improvement in utility compared to the provisional

equilibrium mixed strategy. Since the space of possible policies in our case is infinite, this

process may not converge.

However, in our experiments the procedure converged in fewer than 15 iterations (see

Figure 7.12 in Section 7.5.4), with the fast convergence in part due to the way we represent

policies, as discussed below. The main question that remains is how to compute or approximate

the best response oracles for both players. To this end, we use reinforcement learning

techniques with policies represented using neural networks. Below, we explain both our

double oracle approach and our neural reinforcement learning methods (including the specific

way in which we represent policies) in further detail.

7.4.2 Policy-Based Double Oracle Method

As displayed in Figure 7.2, our game solver is an extension of the double oracle algorithm

proposed in [112] and is partitioned into four parts: a policy container, a linear programming

(LP) optimizer, a defense oracle, and an attack oracle. The policy container stores the

policies of the two players, Π+1 and Π−1, as well as a utility matrix U , whose elements are

128

U+1(π+1,π−1) for all π+1 ∈ Π+1 and π−1 ∈ Π−1. The LP optimizer solves the game by

computing the current mixed-strategy Nash equilibrium given the utility matrix U . The

defense and attack oracles are agents that apply reinforcement learning to compute the optimal

responses to their opponents’ mixed strategies, which are provided by the LP optimizer.

Our solver works in an iterative manner such that the players’ policies and the utility matrix

grow incrementally. Initially, Π+1, Π−1 can be set up with some basic policies, for example,

uniformly allocating each player’s budget among their choices. Then, the policy sets, jointly

encapsulated in a policy container, are updated in each iteration as follows:

1. First, the LP optimizer computes the mixed-strategy Nash Equilibrium (σ
′
+1,σ

′
−1) of

the current iteration by solving the optimization problems presented in Eq. (7.10).

2. The oracle of player v computes the best response policy π′v given that its opponent

uses its equilibrium mixed-strategy σ′−v, for v ∈ {+1,−1}.

3. If Uv(π′v,σ′−v) ≤ Uv(σ
′
v,σ

′
−v) for all v ∈ {+1,−1}, the double oracle algorithm termi-

nates and returns (σ′+1,σ
′
−1) as the approximate MSNE. Otherwise, add π′v to the

corresponding Πv, update the utility matrix U and continue from Step 2.

The resulting (σ
′
+1,σ

′
−1) is an approximate mixed-strategy Nash equilibrium (σ∗+1,σ

∗
−1).

Next, we describe how the defense and attack oracles apply neural reinforcement learning to

compute their best responses to an arbitrary mixed-strategy of the opponent.

129

7.4.3 Approximate Best Response Oracles with Neural Reinforce-

ment Learning

We now turn to our approach to compute π′v, the optimal response of player v when its

opponent uses a mixed strategy σ′−v such that

π′v = arg max
πv

Uv(πv,σ
′
−v). (7.11)

This problem poses a major technical challenge, since the spaces of possible policies for

both the defender and the attacker are quite large. To address this, we propose using the

reinforcement learning (RL) paradigm. However, the use of RL poses two further challenges

in our setting. First, for a given state, each player’s set of possible actions is combinatorial.

For example, the attacker is choosing subsets of attacks, whereas the defender is choosing

subsets of alerts. Consequently, we cannot use common methods such as Q-learning, which

requires explicitly representing the action-value function Q(x, a) for every possible action a,

even if we approximate this function over states x using, e.g., a neural network, as is common

in deep RL. We can address this issue by appealing to actor-critic methods for RL, where the

policy is represented as a parametric function πv;θ with parameters θ. However, this brings

up the second challenge: actor-critic approaches learn policies using gradient-based methods,

which require that the actions are continuous. In our case, however, the actions are discrete.

One solution is to learn the action-value function Q(x, a) over a vector-based representation

of actions, such as using a binary vector to indicate which attacks are used. The problem

with this approach, however, is that the resulting policy πv ∈ arg maxa∈AQ(x, a) is hard to

compute in real time, since it involves a combinatorial optimization problem in its own right.

We therefore opt for a much more scalable solution that uses the actor-critic paradigm with an

130

alternative representation of the adversary and defender policies, which admits gradient-based

learning.

We start with the adversary. Recall that the adversary’s policy maps a state to a subset

of attack actions A, with the constraint on the total budget used by the chosen actions.

Instead of returning a discrete subset of actions, we map the adversary’s policy to a probability

distribution over actions, overloading our prior notation so that α(k)
−1,a now denotes the

probability that action a ∈ A is executed. Now the policy can be used with actor-critic

methods, but it may violate the budget constraint. To address this final issue, we simply

project the probability distribution into the feasible space at execution time by normalizing

it by the total cost of the distribution, and then multiplying by the budget constraint.

Notice that in this process we have relaxed the attacker’s budget constraint to hold only in

expectation; however, this only makes the attacker stronger. An interesting side-effect of our

transformation of the adversary’s policy space is that the RL method will now effectively

search in the space of stochastic adversary policies. An associated benefit is that it leads to

faster convergence of the double oracle approach.

Next, consider the defender. In this case, we can simply represent the policy as a mapping to

fractions of the total defense budget allocated to each alert type t. In other words, for each

alert type t, the policy will output the maximum fraction of the defense budget that will be

used to inspect alerts of type t. This simultaneously makes the mapping continuous, and

obviates the need to explicitly deal with the budget constraint.

The final nuance is that RL methods are typically designed for a fixed environment, whereas

our setting is a game. However, note that since we are concerned only with each player’s best

response to the other’s mixed strategy, we can embed the mixed strategy of the opponent as

131

Actor

Critic

Environment

Agent

Observation

Action

Reward

Feedback

Figure 7.3: The interactions among actor, critic and environment.

a part of the environment. Next, we describe our application of actor-critic methods to our

problem, given the alternative representations of adversary and defender policies above.

The basic idea of the actor-critic method is that we can iteratively learn and improve a

policy without enumerating actions by using two parallel processes that interact with each

other: an actor which develops a policy, and a critic network which evaluates the policy. The

interaction between the actor and critic in illustrated in Figure 7.3. In each iteration, the

actor and critic proceed as follows:

1. The actor executes an action according to its policy given the observation of the

environment.

2. Upon receiving the action, the environment updates its system state and returns a

reward to the critic.

3. The critic updates its evaluation method and provides feedback to the actor.

4. The actor updates its policy according to the feedback given by the critic.

132

We propose DDPG-MIX, actor-critic algorithm that operates in continuous action spaces

and computes an approximate best response to an opponent who uses a stochastic policy.

DDPG-MIX is an extension of the Deep Deterministic Policy Gradient (DDPG) approach

proposed in [61] to our setting, and the full algorithm is outlined in Algorithm 4. For each

player v, DDPG-MIX employs two neural networks to represent the actor and critic: a policy

network πv(Ov|θπv) for the actor, which has parameters θπv and maps an observation Ov into

an action, and a value network Qv(Ov,αv|θQv) for the critic, which has parameters θQv and

maps an observation Ov and an action αv into a value. Initially, these two neural networks

are randomly initialized. Then, we train these two iteratively with multiple episodes, each

of which contains multiple steps. At the beginning of each episode, the opponent samples a

deterministic policy π−v with its mixed-strategy σ−v. The policy network and value network

are then updated as follows. First, we generate an action by using the ε-greedy method:

we randomly choose an action with probability ε (called exploration in RL), and apply the

policy network πv(Ov|θπv) to produce an action corresponding to the current state with

probability 1− ε (called exploitation). Player v then executes the action produced and so

does its opponent, which executes an action α−v returned by π−v. Once the system state

of the environment is updated, player v receives the reward and stores the transition into a

memory buffer. Player v then samples a minibatch, a subset of transitions randomly sampled

from the buffer, to update the value network Qv(Ov,αv|θQv) by minimizing a loss function

as in most regression tasks. The sampled gradient of the value network with respect to αv

is then forwarded to the policy network, which is further applied to update πv(Ov|θπv) as

presented in Eq. (7.12) in Algorithm 4. After a fixed number of episodes, the resulting policy

network πv(Ov|θπv) is returned as the parameterized optimal response to an opponent with

mixed-strategy σ−v.

133

Algorithm 4 DDPG-MIX Algorithm: Compute the pure-strategy best response of player v
when its opponent takes mixed-strategy σ−v.
Input:

The set of opponent’s pure strategies, Π−v;
Mixed strategy of the opponent, σ−v;

Output:
The value network of player v, Qv(Ov,αv|θQv);
The policy network of player v, πv(Ov|θπv);

1: Randomly initialize Qv(Ov,αv|θQv) and πv(Ov|θπv);
2: Initialize replay memory D;
3: for episode = 0,M − 1 do
4: Initialize the system state 〈N (0),M (0),S(0)〉 = 〈0,0,0〉;
5: Sample the opponent’s policy π−v by using σ−v over Π−v;
6: for k = 0, K − 1 do
7: With probability ε select a random action α(k)

v ; Otherwise, select α(k)
v = πv(O

(k)
v |θµv);

8: Execute α(k)
v and α(k)

−v = π−v(O
(k)
−v), observe reward r(k)

v and transit the system state
to Sk+1;

9: Store transition (O
(k)
v ,α

(k)
v , r

(k)
v ,O

(k+1)
v) in D;

10: Sample a random minibatch of N transitions (O
(i)
v ,α

(i)
v , r

(i)
v ,O

(i+1)
v) from D;

11: Set y(i)
v = r

(i)
v + τQv(O

(i+1)
v ,π(O

(i+1)
v |θπv)|θQv);

12: Update the value network by minimizing the loss

L(θQv) =
1

N

∑
i

(y(i)
v −Qv(O

i
v,α

(i)
v |θQv))2;

13: Update the policy network by using the sampled policy gradient:

∇θπvJ ≈
1

N

∑
i

Ja · Jθ (7.12)

where {
Ja = ∇αvQv(Ov,αv|θQv)|

Ov=O
(i)
v ,αv=πv(O

(i)
v)

Jθ = ∇θπvπ(Ov|θπv)|
O

(i)
v

(7.13)

14: end for
15: end for
16: return Player v’s policy network, πv(Ov|θπv).

134

7.4.4 Preprocessing

An important consideration in applying the above approaches is scalability of training. One

way to significantly improve scalability is through preprocessing, and pruning alerts for which

the (near-)optimal decision is obvious. We use the following pruning step to this end. Suppose

that there is an alert type t which is generated by benign traffic with probability at most ε,

where ε is very small (for example, ε = 0, in which case alerts of type t never correspond to

a false positive). In most realistic cases, it is nearly optimal to always inspect such alerts.

Consequently, we prune all alerts with false positive rate below a small pre-defined ε (in

our implementation below, we set ε = 0), and mark them for inspection (correspondingly

reducing the available budget for inspecting other alerts).

7.5 Experimental Results

In this section, we present case studies to investigate the robustness of our proposed approach

for alert prioritization. We conduct our experiments in two applications: intrusion detection

which employs a signature-based detection system and fraud detection which applies a

learning-based detection system. We start with a broad introduction of the experimental

methodology, including the details of the implementation of our approach and evaluation

methods. We then proceed to describe each case study in detail.

7.5.1 Experimental Methodology

Implementation. The DDPG-MIX algorithm was implemented in TensorFlow [1], an open-

source library for neural network learning. The architecture of the policy and value networks

for both players are displayed in Table 7.2. We used Adam for learning the parameters of

135

Table 7.2: Architecture of the implemented policy and value networks.

Neural network Layer Number of units Activation function Initializer

Policy network
Input T (defender); |T |+ |A| · (1 + |T |) (adversary) - -
Hidden 16 (Fraud detection); 32 (Intrusion detection) Tanh Xavier [31]
Output |T | (defender); |A| (adversary) Sigmoid Xavier

Value netwrok
Input 2 · |T | (defender); |T |+ |A| · (2 + |T |) (adversary) - -
Hidden 32 (Fraud detection); 64 (Intrusion detection) Relu He Normal [37]
Output 1 Relu He Normal

the neural networks with learning rates of 0.001 and 0.002 for the policy and value networks,

respectively. The discount factor τ was set to be 0.95, and we set the size of the memory

buffer to 40,000. The learning process contained 500 episodes, each with 400 learning steps.

The collection of policies used in the double-oracle framework was initialized with a pair of

policies that uniformly allocate each player’s budget among their choices.

Our experiments were conducted on a server running Ubuntu 16.04 with Intel(R) Xeon(R)

CPU E5-2695 v4 @ 2.10GHz, 18 cores and 64 GB memory. Each experiment was repeatedly

executed 20 times with 20 different random seeds.

Evaluation Method. We use the expected loss of the defender (equivalently, gain of the

adversary) as the metric throughout our evaluation. Specifically, for a given defense policy,

we evaluate the loss of the defender using several models of the adversary. First, we used

Algorithm 4 to compute the best response of the adversary, as anticipated by our approach.

In addition, to evaluate the general robustness of our approach, we employed two alternative

policies for the adversary: Uniform, a policy which uniformly distributes the adversary’s

budget over attack actions; and Greedy, a policy which allocates the budget to attacks in the

order of expected adversary utility. Specifically, the Greedy adversary prioritizes the attack

actions according to La ·min{ D̃
ca
, 1}, where D̃ is the available attack budget, adding actions

in this priority order until the adversary’s budget is exhausted.

136

We first conduct our experiments by assuming that the defender knows the adversary’s

capabilities. Subsequently, we evaluate the robustness of our approach when the defender is

uncertain about the adversary’s capabilities, and use it to provide practical guidance. Finally,

we provide results on the computational cost of our approach.

7.5.2 Case Study I: Network Intrusion Detection

Our first case study involves a signature-based network intrusion detection scenario, using

the Suricata, a state-of-the-art open source intrusion detection system (IDS), combined with

the CICIDS2017 dataset. Our case study evaluates our alert prioritization method in two

cases: i) the defender has full knowledge of the adversary; and ii) the defender is uncertain

about the adversary’s capabilities.

CICIDS2017 dataset. The CICIDS2017 dataset [96] records benign and malicious network

flows in pcap format, captured in a real-world network between 07/03/2017 and 07/27/2017.

The network consists of 10 desktops belonging to regular users and 5 laptops owned by

attackers. The desktops are used to generate natural benign background traffic by using a

profile system that abstracts the behaviors of regular users. The laptops are employed to

produce malicious traffic of the following classes of attacks: Brute Force, Botnet, DDoS, DoS,

Heartbleed, Infiltration, Portscan, and Web Attack.

Suricata IDS. We employ Suricata12 to conduct our case study on the CICIDS2017 dataset.

Suricata is an open-source network intrusion detection system which performs analysis of

passing traffic on a network by using a set of signatures (also called rules). If a traffic pattern

matches any of the signatures, then a corresponding alert is triggered and sent to the network

administrator.
12Available at https://suricata-ids.org/about/open-source/.

137

Table 7.3: Alert types of Suricata in our experiments.

Alert type Description Priority
attempted-recon Attempted Information Leak 2
attempted-user Attempted User Privilege Gain 1
bad-unknow Potentially Bad Traffic 2
misc-acticity Misc activity 3
not-suspicious Not Suspicious Traffic 3
policy-violation Potential Corporate Privacy Violation 1
protocol-command-decode Generic Protocol Command Decode 3
trojan-activity A Network Trojan was Detected 1
unsuccessful-user Unsuccessful User Privilege Gain 1
web-application-attack Web Application Attack 1

A Suricata signature contains the following parts: action, header, rule options, and priority.

Action describes the operation of Suricata when a signature is matched, which can be either

dropping a packet or raising an alert. Header defines the protocol, port, and IP addresses of

the source and destination in a signature. Rule options include a list of keywords, for example,

the corresponding alert type associated with a priority. Finally, the priority keyword comes

with a numerical value ranging from 1 to 255 where 1 indicates the highest priority and 255

the lowest.

In our experiments, we use Suricata to scan the pcap files in the CICIDS2017 dataset.

Specifically, we use the Emerging Threats Ruleset (ETR)13 to analyze the network traffic in

the dataset. ETR defines a total of 33 alert types, and we select the 10 most common alert

types exhibited during our experiments, which are shown in Table 7.3.

Experimental Setup. We use the following steps to set up our experiments for the case

study. First, we used 30 minutes as the fixed length of each time period. Then, we utilized

the Suricata IDS to scan and detect intrusions for both malicious and benign traffic in the

CICIDS2017 data. By doing so, we obtained the number of alerts of each type raised by each

attack action, as well as the number of false alerts in each time period. In the preprocessing
13Available at https://rules.emergingthreats.net/open/suricata/.

138

https://rules.emergingthreats.net/open/suricata/

Table 7.4: Attack actions and alert types used in the case study of intrusion detection.

Attack action Number of each alert type raised
Ea Laattempted-recon attempted-user bad-unknown misc-activity not-suspicious policy-violation protocol-command-decode

Brute Force 1230 0 0 0 0 0 0 120 3.6
Botnet 0 4 2 106 0 54 0 60 6.0
DoS 0 0 0 0 0 24 0 74 4.0

Heartbleed 0 0 4 0 10 0 0 20 3.6
Infiltration 710 2 862 12 0 80 600 52 1.4
PortScan 138 0 320 30 0 0 0 80 1.4

Web Attack 0 0 6 0 0 0 0 62 2.7

Table 7.5: Average number of false alerts triggered in each time period

Alert type Avg. number of false alerts in each period
attempted-recon 7,200
attempted-user 44,100
bad-unknown 1,600
misc-activity 7,300
not-suspicious 17,400
policy-violation 4,000

protocol-command-decode 10,200

step we pruned alert types that were triggered only by malicious traffic, as discussed in

Section 7.4.4. As a result, we were left with 7 out of the 10 alert types to consider using our

full adversarial RL framework. In addition, we filtered out the attack actions that do not

raise any alerts, since those attacks will never be detected using Suricata, leaving 7 out of 8

representative attacks for our experiments. The final attack actions and alert types that we

use in the experiments are given in Table 7.4.

We used Poisson distribution to fit the distribution of alerts raised by benign traffic in each

time period. Since the benign traffic in the CICIDS2017 dataset was captured from only 10

desktop which is far less than the number of computers in a real-world local area network,

we amplified the corresponding mean of each type of alert by a factor of 100. The resulting

average numbers are shown in Table 7.5. We set the cost of investigating each alert to

1.0 (i.e., equal for all alerts). Next, we used the base score of the Common Vulnerability

Scoring System (CVSS) to measure the loss of defender if an attack action was not detected.

Specifically, we employed CVSS v3.014 to compute La for a ∈ A. Note that since the defender
14Available at https://www.first.org/cvss/calculator/3.0.

139

observes only alerts but not the actual attacks, alert-investigation decisions in deployment

cannot directly take advantage of the CVSS scores to quantify the risk of underlying attack.

However, since the ground truth is available during training and evaluation, CVSS scores are

used to provide additional information on the impact of the attack. For example, the cost of

mounting a Brute Force attack is 120 minutes. We document La (loss to the defender from a

successful attack) and Ea (execution cost of the attack) for a ∈ A in Table 7.4.

Baselines. The performance of the proposed approach is compared with two alternative

policies for alert prioritization: Uniform, a policy which uniformly allocates the defender’s

budget over alert types, and Suricata priorities, where the defender exhausts the defense

budget according to the built-in prioritization of the Suricata IDS, shown in Table 7.3. We

tried two additional baselines from prior literature that use game theoretic alert prioritization:

GAIN [56] and RIO [127], but these do not scale computationally to the size of our IDS

case study (we compare to these in our second, smaller, case study). We did not compare to

alert correlation methods for reducing the number of false alerts, since these techniques are

entirely orthogonal and complementary to our setting (we address the issue of limited alert

inspection budget in the face of false alerts, whatever means are used to generate alerts).

Throughout, we refer to our proposed approach as ARL.

Results. Figure 7.4 presents our evaluation of the robustness of alert prioritization approaches

when the defender knows the adversary’s capabilities, and the results suggest that our approach

significantly outperforms the other baselines. Specifically, the proposed approach is 50%

better than the Uniform policy, which in turn is significantly better than using Suricata

priorities. There are a few reasons why deterministic priority-based approaches perform so

poorly. First, determinism allows attackers to easily circumvent the policy by focusing on

attacks that trigger alerts which are rarely inspected. Moreover, such naive deterministic

policies also fail to exploit the empirical relationships between attacks and alerts they tend to

140

500 1000 1500
Defense budget

0

50

100

150

200

De
fe

nd
er

's
lo

ss
ARL
Uniform
Suricata

60 120 180
Attack budget

0

50

100

150

200

De
fe

nd
er

's
lo

ss

ARL
Uniform
Suricata

Figure 7.4: Intrusion detection: loss of the defender when it knows the attack budget.
Left: Defender’s loss for different defense budgets, with attack budget fixed at 120. Right:
Defender’s loss for different attack budgets, with defense budget fixed at 1000.

60 120 180
Actual attack budget

0

50

100

150

200

De
fe

nd
er

's
lo

ss

ARL
Uniform
Suricata

60 120 180
Actual attack budget

0

50

100

150

200
De

fe
nd

er
's

lo
ss

ARL
Uniform
Suricata

Figure 7.5: Intrusion detection: loss of the defender when it is uncertain of the attack
budget. Left: def. budget=500. Right: def. budget=1500. The defender’s estimate of
the attack budget is 120 in all cases. Thus, if the actual attack budget is 60, then the
defender overestimates the adversary’s budget; if the actual attack budget is 180, then it is
underestimated by the defender.

trigger: for example, if an attack triggers multiple alerts, but one of these alert types happens

to have very few alerts in current logs, static priority-based policies will not leverage this

structure. In contrast, by learning a policy of alert inspection which maps arbitrary alert

observations to a decision about which to inspect, we can make decisions at a significantly

finer granularity.

141

60 120 180
Defender's estimate of adv. budget

180

120

60Ac
tu

al
 a

dv
. b

ud
ge

t 50 49 47

34 35 32

18 18 19
20

30

40

50

Figure 7.6: Intrusion detection: loss of the defender when it has different estimates of the
attack budget.

Evaluating the alert prioritization methods when the defender is uncertain about the attack

budget (Figures 7.5 and 7.6), we can observe that the proposed ARL approach still achieves the

lowest defender loss both when the attack budget is underestimated and when overestimated,

and it is still far better than the baselines. In addition, Figure 7.6 shows that when the attack

budget is underestimated or overestimated, there is only a 5% performance degradation

compared to when the defender has full knowledge of the adversary. This demonstrates

that our approach remains robust to a strategic adversary even when the defender does not

precisely know the adversary’s capabilities. Moreover, in this domain we can see that neither

over- nor underestimating adversary’s budget is particularly harmful, although overestimation

appears to be slightly better.

Our final consideration is the impact of uncertainty about the adversary’s rationality (Fig-

ure 7.7). Specifically, we now study how our approach performs, compared to the baselines,

if the adversary is in some way myopic, either using a simple uniform strategy (Uniform)

or greedily choosing attacks in order of impact (Greedy). We can observe that although

142

ARL Uniform Suricata
Defender's policy

Greedy

Uniform

ARL

At
ta

ck
er

's
po

lic
y

56 95 80

54 75 93

53 95 107
60

70

80

90

100

ARL Uniform Suricata
Defender's policy

Greedy

Uniform

ARL

At
ta

ck
er

's
po

lic
y

21 45 68

22 43 88

22 53 104 40

60

80

100

Figure 7.7: Intrusion detection: loss of the defender when it is certain of the attack budget
but is uncertain of the attack policy. The attack budget is fixed as 120. Left: def. budget=500.
Right: def. budget=1500.

we assume a very strong adversary, our ARL approach significantly outperforms the other

baselines even when the adversary is using a different attack policy.

7.5.3 Case Study II: Fraud Detection

While NIDS settings are a natural fit for our approach, we now demonstrate its generalizability

by considering a very different problem in which our goal is to identify fraudulent credit

card transactions. Just as with the first case study, we will present the results first when

the defender has full knowledge of the adversary’s capabilities, and subsequently study the

impact of defender’s uncertainty about these.

Fraud dataset. The fraud dataset15 contains 284,807 credit card transactions, of which

482 are fraudulent. Each transaction is represented by a vector of 30 numerical features,

28 of which are transformed using Principle Component Analysis (PCA). In addition, each

feature vector is associated with a binary label indicating the type of transaction (regular or

fraudulent). In order to make it meaningful in our context, we cluster the set of fraudulent
15Available at: https://www.kaggle.com/mlg-ulb/creditcardfraud.

143

Table 7.6: Number of transactions in the modified fraud dataset

Original transaction type Label Count
Genuine 0 284,308

Fraudulent

1 11
2 21
3 72
4 250
5 14
6 124

transactions into n subsets, indicating a type of attack, using a Gaussian Mixture model [8].

In our experiments, we set n = 6, and modify the dataset with fraudulent labels replaced by

cluster assignments. The counts of each type of transaction is shown in Table 7.6.

Learning-based fraud detector. We developed a fraud detector using supervised learning

on the fraud dataset. The main challenge is that the dataset is highly imbalanced, as shown

in Table 7.6: the fraudulent transactions only account for < 0.2% of all transactions. To

address this challenge, we apply Synthetic Minority Over-sampling Technique (SMOTE) to

produce synthetic data for the minority classes to balance the data. Our implementation

contains the following steps:

(i) Dataset splitting : We use stratified split to partition the modified fraud dataset into

training and test data with equal size, which contain roughly the same proportions of the

fraudulent and non-fraudulent data.

(ii) Binary classification: We use SMOTE and linear SVM to learn a binary classifier to

predict whether a transaction is fraudulent. The resulting classifier has an AUC >99%

and a recall >90% on the test data, which indicates that more than 90% of the fraudulent

transactions can be detected.

144

(iii) Multi-class classification: We now restrict attention to only the fraudulent transactions to

learn a conditional classifier to predict the type of fraud. Specifically, we learn 6 independent

classifiers each of which corresponds to one fraud type and returns a binary classification

result indicating whether a fraudulent transaction belongs to this type. Similarly to Step (ii),

we use SMOTE and linear SVM to learn these classifiers, each of which admits > 94% recall.

Once the fraud detector is implemented, we evaluate the detector using the test dataset. We

first predict the test data by using the binary classifier obtained in Step (ii) above. If any

transaction in the test data is classified as fraudulent, then it is further inspected by the 6

classifiers we construct for multi-class classification. If a fraudulent transaction is predicted as

any type of fraud, then a corresponding alert is triggered. Otherwise, an alert corresponding

to the fraud type which is predicted with the highest classification score is triggered.

Experimental Setup. To evaluate the robustness of the proposed approach for alert

prioritization in fraud detection, we first computed the distributions of the true and false

alerts identified by the fraud detector that we implemented. By doing so, we obtained the

probability that any attack a ∈ A triggers an alert t ∈ T , as well as the number of false

alarms associated with each type of alert, each of which has a value of 1 as the investigation

cost. We filtered out alert types that were triggered only by fraudulent transactions (as we

had done before), leaving 3 out of 6 alert types. We also filtered out the attack actions which

are associated with the alert types omitted above, as these attacks can always be detected by

investigating the corresponding alerts. The resulting distribution of the alerts triggered by

frauds is given in Table 7.7.

We used [1, 3, 2] as the adversary’s cost of the mounting each type of attack action. We

employed the mean amount of each type of fraudulent transaction as the loss of the defender

if any such type of attack action is not detected, measured by the unit of 10 Euros. The

145

Table 7.7: Probability that an attack action triggers each type of alert

Attack action Alert type
1 2 3

1 0.9 0.61 0
2 0.09 0.87 0.12
3 0 0.41 0.85

corresponding defender’s loss for each undetected attack was [9.4, 12.1, 16.0]. In addition, we

used 30 minutes as the fixed length of each time period in our experiments. Based on our

classification results, the average number of false alerts that occur of each type in a time

period was [10, 47, 39]. Similar to our IDS case study, we simulated the distribution of false

alerts by using Poisson processes with the above mean values.

Baselines. The performance of the proposed approach is investigated by comparing with

three alternative policies for alert prioritization: Uniform, a policy which uniformly allocates

the defender’s budget over each alert type; GAIN [56], a game theoretic approach which

prioritizes alert types, and always inspects all alerts of a selected type; and RIO [127], another

game theoretic approach which prioritizes alerts, and computes an approximately optimal

number of alerts of each type to inspect.

Results. Figure 7.8 shows the results when the defender has full knowledge of the adversary’s

capabilities. We can observe that the proposed approach (ARL) outperforms other baselines

in all settings, typically by at least 25%. The main reason for the advantage is similar to that

in the IDS setting: the ability to have a policy that is carefully optimized and conditional on

state significantly increases its efficiency. Interestingly, the alternative game theoretic alert

prioritization approaches, GAIN and RIO, are in some cases worse than the uniformly random

policy. The key reason is that they can be myopic in that they independently optimize for a

single time period, whereas attacks can be adaptive. The proposed approach, in contrast,

explicitly considers such adaptivity.

146

10 20 30
Defense budget

0

100

200

300

400

500

De
fe

nd
er

's
lo

ss
ARL
Uniform
GAIN
RIO

1 2 3
Attack budget

0

100

200

300

400

500

De
fe

nd
er

's
lo

ss

ARL
Uniform
GAIN
RIO

Figure 7.8: Fraud detection: loss of the defender when it knows the attack budget. Left:
Defender’s loss by its budget, with attack budget adv_budget being fixed as 2. Right:
Defender’s loss by attack budget, with defense budget def_budget being fixed as 20.

1 2 3
Actual attack budget

0

100

200

300

400

500

De
fe

nd
er

's
lo

ss

ARL
Uniform
GAIN
RIO

1 2 3
Actual attack budget

0

100

200

300

400

500
De

fe
nd

er
's

lo
ss

ARL
Uniform
GAIN
RIO

Figure 7.9: Fraud detection: loss of the defender when it is uncertain of the attack budget.
Left: def. budget=10. Right: def. budget=30. The defender’s estimate of the attack budget
is 2. If the actual attack budget is 1, then the defender overestimates the adversary’s budget;
if the actual attack budget is 3, then it is underestimated.

Figures 7.9 and 7.10 investigate performance of our approach when the attack budget is

uncertain. It can be seen in Figure 7.9 that ARL remains the best approach to use, despite

this uncertainty. Interestingly, GAIN can, in contrast, be rather fragile to such uncertainty.

Considering Figure 7.10, both under- and overestimation of the attack budget incurs a

limited performance impact (< 10%). More interesting, however, is the observation that it

is actually better to slightly underestimate the adversary’s budget: in the worst case, this

147

1 2 3
Defender's estimate of adv. budget

3

2

1Ac
tu

al
 a

dv
. b

ud
ge

t 280 286 272

206 205 234

102 102 114

Defender's loss matrix

150

200

250

Figure 7.10: Fraud detection: loss of the defender when it has different estimates of the
attack budget.

hurts performance less than 3%. Effectively, the approach remains quite robust even against

stronger attacks, whereas overestimating the budget does not take sufficient advantage of

weaker adversaries.

Finally, we study the robustness of ARL compared to other baselines when the attacker is

using different policies (Uniform or Greedy) instead of the RL-based policy that is assumed by

our approach (Figure 7.11). Here, the results are slightly more ambiguous than we observed

in the IDS domain: when the adversary is using the Greedy policy, RIO does outperform

ARL by 8% when the defender’s budget is small, and by 13% when the defender’s budget is

large. However, in these cases, the adversary can gain a great deal by more carefully designing

its policy. Thus, when the defender’s budget is large, a rational adversary can cause RIO to

degrade by nearly 18%, where ARL is quite robust to such adversaries.

148

ARL Uniform GAIN RIO
Defender's policy

Greedy

Uniform

ARLAt
ta

ck
er

's
po

lic
y 260 277 238 238

223 224 247 247

258 267 277 277

Defender's loss matrix

230

240

250

260

270

ARL Uniform GAIN RIO
Defender's policy

Greedy

Uniform

ARLAt
ta

ck
er

's
po

lic
y 158 215 180 137

152 134 182 184

153 214 210 186

Defender's loss matrix

140

160

180

200

Figure 7.11: Fraud detection: loss of the defender when it is certain of the attack budget
but is uncertain of the attack policy. The attack budget is fixed as 2. Left: def. budget=10.
Right: def. budget=30.

500 1000 1500
Defense budget

0

5

10

15

Nu
m

be
r o

f i
te

ra
tio

ns

10 20 30
Defense budget

0

5

10

15

Nu
m

be
r o

f i
te

ra
tio

ns

Figure 7.12: Computational cost. Left: Number of double oracle iterations in network
intrusion detection with adv. budget=120. Right: Number of double oracle iterations in
fraud detection with adv. budget=2.

7.5.4 Computational Cost

Figure 7.12 presents our evaluation of the computational cost of the proposed alert prioritiza-

tion approach. The results show that the double oracle algorithm can converge very fast in

practice, with fewer than 15 iterations in most cases; indeed, in the vast majority of instances

we need fewer than 10 iterations.

149

Another interesting observation is non-monotonicity of convergence time (in terms of iterations)

as we increase the defense budget. In the IDS setting, for example, increasing the defense

budget increases the number of iterations when we go from a budget of 500 to 1000, but the

computational cost remains stable as we further increase the budget to 1500. In contrast,

in the fraud detection case study, increasing the budget from 10 to 20 has little impact on

the number of iterations, but further increasing it to 30 actually reduces the number of

iterations necessary for convergence. To understand this phenomenon, note that increasing

the defender’s budget has two opposing effects: on the one hand, the search space for the

defender increases significantly, but on the other hand, it may become much easier to compute

a near-optimal defense with a larger budget (for example, with a large enough budget, we

can almost always inspect all alerts).

7.6 Conclusion

Since even after applying techniques for reducing the alert burden (e.g., alert correlation)

there often remain vastly more alerts than time to investigate them, the success of detection

often hinges on how defenders prioritize certain alerts over others. In practice, prioritization

is typically based on non-strategic heuristics (e.g., Suricata’s built-in priority values), which

may easily be exploited by a strategic attacker who can adapt to the prioritization. Strategic

prioritization approaches attempt to prevent this by using game-theory to capture adaptive

attackers; however, existing strategic approaches severely restrict the defender’s policy (e.g.,

strict prioritization) for the sake of computational tractability.

In contrast,in this chapter we introduced a general model of alert prioritization that does not

impose any restrictions on the defender’s policy, and we proposed a novel double oracle and

reinforcement learning based approach for finding approximately optimal prioritization policies

150

efficiently. Our experimental results—based on case studies of IDS and fraud detection—

demonstrate that these policies significantly outperform non-strategic prioritization and prior

game-theoretic approaches. Further, to demonstrate the strength of our attacker model, we

also showed that the attacker policies found by our approach outperform multiple baseline

policies.

For practitioners, the key task in applying our approach is estimating the parameter values

of our model. In our case studies, we showed how to estimate parameters in two domains

(e.g., for NIDS, using CVSS score to estimate attack impact and CVSS complexity for

attack cost). The most difficult parameter to estimate is the attacker’s budget; however, our

experimental results show that our approach is robust to uncertainty in the attacker’s budget

and outperforms other approaches even when the budget is misestimated. We leave studying

the sensitivity to other parameters to future work.

151

Part IV

Robust Decentralized Learning

Ecosystem

152

Chapter 8

One VS. Many: Adversarial Regression

with Multiple Learners

In previous chapters, we have investigated robust machine learning with a single learner against

an adversary. However, in many situations an adversary’s decision is aimed at a collection of

learners, rather than specifically targeted at each independently. In this chapter, we study

the problem of adversarial linear regression with multiple learners. We first approximate

the resulting game by exhibiting an upper bound on learner loss functions, and show that

the resulting game has a unique symmetric equilibrium. We then present an algorithm for

computing this equilibrium, and show through extensive experiments that equilibrium models

are significantly more robust than conventional regularized linear regression.

8.1 Overview

In this chapter, we investigate the problem of adversarial regression with a collection of learners

and a single adversary. We model the resulting game as an interaction between multiple

153

learners, who simultaneously learn linear regression models, and an attacker, who observes the

learned models (as in white-box attacks [103]), and modifies the original feature vectors at test

time in order to induce incorrect predictions. Crucially, rather than customizing the attack to

each learner (as in typical models), the attacker chooses a single attack for all learners. We

term the resulting game a Multi-Learner Stackelberg Game, to allude to its two stages, with

learners jointly acting as Stackelberg leaders, and the attacker being the follower. Our first

contribution is the formal model of this game. Our second contribution is to approximate this

game by deriving upper bounds on the learner loss functions. The resulting approximation

yields a game in which there always exists a symmetric equilibrium, and this equilibrium is

unique. In addition, we prove that this unique equilibrium can be computed by solving a

convex optimization problem. Our third contribution is to show that the equilibrium of the

approximate game is robust, both theoretically (by showing it to be equivalent to a particular

robust optimization problem), and through extensive experiments, which demonstrate it to

be much more robust to attacks than standard regularization approaches.

8.2 Model

We investigate the interactions between a collection of learners N = {1, 2, ..., n} and an

attacker in regression problems, modeled as a Multi-Learner Stackelberg Game (MLSG). At

the high level, this game involves two stages: first, all learners choose (train) their models

from data, and second, the attacker transforms test data (such as features of the environment,

at prediction time) to achieve malicious goals. Below, we first formalize the model of the

learners and the attacker, and then formally describe the full game.

154

8.2.1 Modeling the Players

At training time, a set of training data (X,y) is drawn from an unknown distribution D.

X ∈ Rm×d is the training sample and y ∈ Rm×1 is a vector of values of each data in X. We

let xj ∈ Rd×1 denote the jth instance in the training sample, associated with a corresponding

value yj ∈ R from y. Hence, X = [x1, ...,xm]> and y = [y1, y2, ..., ym]>. On the other hand,

test data can be generated either from D, the same distribution as the training data, or from

D′ , a modification of D generated by an attacker. The nature of such malicious modifications

is described below. We let β (0 ≤ β ≤ 1) represent the probability that a test instance

is drawn from D′ (i.e., the malicious distribution), and 1 − β be the probability that it is

generated from D.

The action of the ith learner is to select a d × 1 vector θi as the parameter of the linear

regression function ŷi = Xθi, where ŷi is the predicted values for data X. The expected cost

function of the ith learner at test time is then

ci(θi,D
′
) = βE(X′ ,y)∼D′ [`(X

′
θi,y)]

+ (1− β)E(X,y)∼D[`(Xθi,y)].

(8.1)

where `(ŷ,y) = ||ŷ − y||22. That is, the cost function of a learner i is a combination of its

expected cost from both the attacker and the honest source.

Every instance (x, y) generated according to D is, with probability β, maliciously modified

by the attacker into another, (x′, y), as follows. We assume that the attacker has an instance-

specific target z(x), and wishes that the prediction made by each learner i on the modified

instance, ŷ = θ>i x
′ , is close to this target. We measure this objective for the attacker by

`(ŷ, z) = ||ŷ − z||22 for a vector of predicted and target values ŷ and z, respectively. In

155

addition, the attacker incurs a cost of transforming a distribution D into D′ , denoted by

R(D′ ,D).

After a dataset (X
′
,y) is generated in this way by the attacker, it is used simultaneously

against all the learners. This is natural in most real attacks: for example, spam templates

are commonly generated to be used broadly, against many individuals and organizations,

and, similarly, malicious executable programs are often produced to be generally effective,

rather than custom made for each target. The expected cost function of the attacker is then

a sum of its total expected cost for all learners plus the cost of transforming D into D′ with

coefficient λ > 0:

ca({θi}ni=1,D
′
) =

n∑
i=1

E(X′ ,y)∼D′ [`(X
′
θi, z)] + λR(D′ ,D). (8.2)

As is typical, we estimate the cost functions of the learners and the attacker using training

data (X,y), which is also used to simulate attacks. Consequently, the cost functions of each

learner and the attacker are estimated by

ci(θi,X
′
) = β`(X

′
θi,y) + (1− β)`(Xθi,y) (8.3)

and

ca({θi}ni=1,X
′
) =

n∑
i=1

`(X
′
θi, z) + λR(X

′
,X) (8.4)

where the attacker’s modification cost is measured by R(X
′
,X) = ||X′ −X||2F , the squared

Frobenius norm.

156

8.2.2 The Multi-Learner Stackerlberg Game

We are now ready to formally define the game between the n learners and the attacker. The

MLSG has two stages: in the first stage, learners simultaneously select their model parameters

θi, and in the second stage, the attacker makes its decision (manipulating X
′) after observing

the learners’ model choices {θi}ni=1. We assume that the proposed game satisfies the following

assumptions:

1. The learners have complete information about parameters β, λ and z. This is a strong

assumption, and we relax it in our experimental evaluation (Section 8.6), providing

guidance on how to deal with uncertainty about these parameters.

2. Each learner has the same action (model parameter) space Θ ⊆ Rd×1 which is nonempty,

compact and convex. The action space of the attacker is Rm×d.

3. The columns of the training data X are linearly independent.

We use Multi-Learner Stackelberg Equilibrium (MLSE) as the solution for the MLSG, defined

as follows.

Definition 1 (Multi-Learner Stackelberg Equilibrium (MLSE)). An action profile ({θ∗i }ni=1,X
∗)

is an MLSE if it satisfies

θ∗i = arg min
θi∈Θ

ci(θi,X
∗(θ)),∀i ∈ N

s.t. X∗(θ) = arg min
X′∈Rm×d

ca({θi}ni=1,X
′
).

(8.5)

where θ = {θi}ni=1 constitutes the joint actions of the learners.

157

At the high level, the MLSE is a blend between a Nash equilibrium (among all learners) and

a Stackelberg equilibrium (between the learners and the attacker), in which the attacker plays

a best response to the observed models θ chosen by the learners, and given this behavior by

the attacker, all learners’ models θi are mutually optimal.

The following lemma characterizes the best response of the attacker to arbitrary model choices

{θi}ni=1 by the learners.

Lemma 1 (Best Response of the Attacker). Given {θi}ni=1, the best response of the attacker

is

X∗ = (λX + z
n∑
i=1

θ>i)(λI +
n∑
i=1

θiθ
>
i)−1. (8.6)

Proof. We derive the best response of the attacker by using the first order condition. Let

∇X′ca({θi}ni=1,X
′
) denote the gradient of ca with respect to X

′ . Then

∇X′ca = 2
n∑
i=1

(X
′
θi − z)θ>i + 2λ(X

′ −X).

Due to convexity of ca, let ∇X′ca = 0, we have

X∗ = (λX + z
n∑
i=1

θ>i)(λI +
n∑
i=1

θiθ
>
i)−1.

Lemma 1 shows that the best response of the attacker, X∗, has a closed form solution, as a

function of learner model parameters {θi}ni=1. Let θ−i = {θj}j 6=i, then ci(θi,X∗) in Eq. (8.5)

158

can be rewritten as

ci(θi,θ−i) = β`(X∗(θi,θ−i)θi,y) + (1− β)`(Xθi,y). (8.7)

Using Eq. (8.7), we can then define a Multi-Learner Nash Game (MLNG):

Definition 2 (Multi-Learner Nash Game (MLNG)). A static game, denoted as 〈N ,Θ, (ci)〉

is a Multi-Learner Nash Game if

1. The set of players is the set of learners N ,

2. the cost function of each learner i is ci(θi,θ−i) defined in Eq. (8.7),

3. all learners simultaneously select θi ∈ Θ.

We can then define Multi-Learner Nash Equilibrium (MLNE) of the game 〈N ,Θ, (ci)〉:

Definition 3 (Multi-Learner Nash Equilibrium (MLNE)). An action profile θ∗ = {θ∗i }ni=1

is a Multi-Learner Nash Equilibrium of the MLNG 〈N ,Θ, (ci)〉 if it is the solution of the

following set of coupled optimization problem:

min
θi∈Θ

ci(θi,θ−i),∀i ∈ N . (8.8)

Combining the results above, the following result is immediate.

Theorem 1. An action profile ({θ∗i }ni=1,X
∗) is an MLSE of the multi-learner Stackelberg

game if and only if {θ∗i }ni=1 is a MLNE of the multi-learner Nash game 〈N ,Θ, (ci)〉, with X∗

defined in Eq. (8.6) for θi = θ∗i ,∀i ∈ N .

159

Theorem 1 shows that we can reduce the original (n+ 1)-player Stackelberg game to an n-

player simultaneous-move game 〈N ,Θ, (ci)〉. In the remaining sections, we focus on analyzing

the Nash equilibrium of this multi-learner Nash game.

8.3 Theoretical Analysis

In this section, we analyze the game 〈N ,Θ, (ci)〉. As presented in Eq. (8.6), there is an

inverse of a complicated matrix to compute the best response of the attacker. Hence, the

cost function ci(θi,θ−i) shown in Eq. (8.7) is intractable. To address this challenge, we first

derive a new game, 〈N ,Θ, (c̃i)〉 with tractable cost function for its players, to approximate

〈N ,Θ, (ci)〉. Afterward, we analyze existence and uniqueness of the Nash Equilibrium of

〈N ,Θ, (c̃i)〉.

8.3.1 Approximation of The Game

We start our analysis by computing (λI +
∑n

i=1 θiθ
>
i)−1 presented in Eq. (8.6). Let matrix

An = λI +
∑n

i=1 θiθ
>
i , and A−i = λI +

∑
j 6=i θjθ

>
j . Then, An = A−i + θiθ

>
i . Similarly, let

matrix Bn = λX+z
∑n

i=1 θ
>
i , and B−i = λX+z

∑
j 6=i θ

>
j , which implies that Bn = B−i+zθ>i

The best response of the attacker can then be rewritten as X∗ = BnA
−1
n . We then obtain the

following results.

Lemma 2. An and A−i satisfy

1. An and A−i are invertible, and the corresponding invertible matrices, A−1
n and A−1

−i ,

are positive definite.

2. A−1
n = A−1

−i −
A−1
−i θiθ

>
i A−1
−i

1+θ>i A−1
−i θi

.

3. θ>i A−1
−iθi ≤ 1

λ
θ>i θi.

160

Proof. The proof is included in the Appendix C.1.

Lemma 2 allows us to relax `(X∗(θi,θ−i)θi,y) as follows:

Lemma 3.

`(X∗(θi,θ−i)θi,y) ≤ `(B−iA
−1
−iθi,y)

+
1

λ2
||z− y||22(θ>i θi)

2. (8.9)

Proof. The proof is included in the Appendix C.2.

Note that in Eq. (8.9), B−i and A−i only depend on {θj}j 6=i. Hence, the RHS of Eq. (8.9)

is a strictly convex function with respect to θi. Lemma 3 shows that `(X∗(θi,θ−i)θi,y)

can be relaxed by moving θi out of X∗(θi,θ−i) and adding a regularizer (θ>i θi)
2 with its

coefficient ||z−y||22
λ2

. Motivated by this method, we iteratively relax `(X∗(θi,θ−i)θi,y) by

adding corresponding regularizers. We now identify a tractable upper bound function for

ci(θi,θ−i).

Theorem 2.

ci(θi,θ−i) ≤ c̄i(θi,θ−i)

= `(Xθi,y) +
β

λ2
||z− y||22

n∑
j=1

(θ>j θi)
2 + ε,

(8.10)

where ε is a positive constant and ε < +∞.

Proof. We prove by extending the results in Lemma 3 and iteratively relaxing the cost

function. The details are included in Appendix C.3.

161

As represented in Eq. (8.10), c̄i(θi,θ−i) is strictly convex with respect to θi and θj(∀j 6= i).

We then use the game 〈N ,Θ, (c̄i)〉 as an approximation of 〈N ,Θ, (ci)〉. Let

c̃i(θi,θ−i) = c̄i(θi,θ−i)− ε

= `(Xθi,y) +
β

λ2
||z− y||22

n∑
j=1

(θ>j θi)
2,

(8.11)

then 〈N ,Θ, (c̃i)〉 has the same Nash equilibrium with 〈N ,Θ, (c̄i)〉 if one exists, as adding or

deleting a constant term does not affect the optimal solution. Hence, we use 〈N ,Θ, (c̃i)〉 to

approximate 〈N ,Θ, (ci)〉, and analyze the Nash equilibrium of 〈N ,Θ, (c̃i)〉 in the remaining

sections.

8.3.2 Existence of Nash Equilibrium

As introduced in Section 8.2, each learner has identical action spaces, and they are trained with

the same dataset. We exploit this symmetry to analyze the existence of a Nash equilibrium

of the approximation game 〈N ,Θ, (c̃i)〉.

We first define a Symmetric Game [15]:

Definition 4 (Symmetric Game). An n-player game is symmetric if the players have the

same action space, and their cost functions ci(θi,θ−i) satisfy

ci(θi,θ−i) = cj(θj,θ−j),∀i, j ∈ N (8.12)

if θi = θj and θ−i = θ−j.

In a symmetric game 〈N ,Θ, (c̃i)〉 it is natural to consider a Symmetric Equilibrium:

162

Definition 5 (Symmetric Equilibrium). An action profile {θ∗i }ni=1 of 〈N ,Θ, (c̃i)〉 is a sym-

metric equilibrium if it is a Nash equilibrium and θ∗i = θ∗j ,∀i, j ∈ N .

We now show that our approximate game is symmetric, and always has a symmetric Nash

equilibrium.

Theorem 3 (Existence of Nash Equilibrium). 〈N ,Θ, (c̃i)〉 is a symmetric game and it has

at least one symmetric equilibrium.

Proof. As described above, the players of 〈N ,Θ, (c̃i)〉 use the same action space and complete

information of others. Hence, the cost function ci is symmetric, making 〈N ,Θ, (c̃i)〉 a

symmetric game. As 〈N ,Θ, (c̃i)〉 has nonempty, compact and convex action space, and the

cost function c̃i is continuous in {θi}ni=1 and convex in θi, according to Theorem 3 in [15],

〈N ,Θ, (c̃i)〉 has at least one symmetric Nash equilibrium.

8.3.3 Uniqueness of Nash Equilibrium

While we showed that the approximate game always admits a symmetric Nash equilibrium,

it leaves open the possibility that there may be multiple symmetric equilibria, as well as

equilibria which are not symmetric. We now demonstrate that this game in fact has a unique

equilibrium (which must therefore be symmetric).

Theorem 4 (Uniqueness of Nash Equilibrium). 〈N ,Θ, (c̃i)〉 has a unique Nash equilibrium,

and this unique NE is symmetric.

Proof. We have known that 〈N ,Θ, (c̃i)〉 has at least one NE, and each learner has an

nonempty, compact and convex action space Θ. Hence, we can apply Theorem 2 and

163

Theorem 6 of [92]. That is, for some fixed {ri}ni (0 < ri < 1,
∑n

i=1 ri = 1), if the matrix in

Eq. (8.13) is positive definite, then 〈N ,Θ, (c̃i)〉 has a unique NE.

Jr(θ) =

r1∇θ1,θ1 c̃1(θ) . . . r1∇θ1,θn c̃1(θ)

...
...

rn∇θn,θ1 c̃n(θ) . . . rn∇θn,θn c̃n(θ)

 (8.13)

We first let r1 = r2 = ... = rn = 1
n
and decompose Jr(θ) as follows,

Jr(θ) =
2

n
P +

2β||z− y||22
λ2n

(Q + S + T), (8.14)

where P and Q are block diagonal matrices such that Pii = X>X, Pij = 0, Qii = 4θiθ
>
i +

θ>i θiI and Qij = 0, ∀i, j ∈ N , j 6= i. S and T are block symmetric matrices such that

Sii = θ>i θiI, Sij = θ>i θjI, Tii =
∑

j 6=i θjθ
>
j and Tij = θjθ

>
i , ∀i, j ∈ N , j 6= i.

Next, we prove that P is positive definite, and Q, S and T are positive semi-definite. Hence,

Jr(θ) is positive definite, which indicates that 〈N ,Θ, (c̃i)〉 has a unique NE. As Theorem 3

points out, the game has at least one symmetric NE. Therefore, the NE is unique and must be

symmetric. Due to space limitation the details of this proof are included in Appendix C.4.

8.4 Computing the Equilibrium

Having shown that 〈N ,Θ, (c̃i)〉 has a unique symmetric Nash equilibrium, we now consider

computing its solution. We exploit the symmetry of the game which enables to reduce the

search space of the game to only symmetric solutions. Particularly, we derive the symmetric

Nash equilibrium of 〈N ,Θ, (c̃i)〉 by solving a single convex optimization problem. We obtain

the following result.

164

Theorem 5. Let

f(θ) = `(Xθ,y) +
β(n+ 1)

2λ2
||z− y||22(θ>θ)2, (8.15)

Then, the unique symmetric NE of 〈N ,Θ, (c̃i)〉, {θ∗i }ni=1, can be derived by solving the following

convex optimization problem

min
θ∈Θ

f(θ) (8.16)

and then letting θ∗i = θ∗, ∀i ∈ N , where θ∗ is the solution of Eq. (8.16).

Proof. We prove this theorem by characterizing the first-order optimality conditions of each

learner’s minimization problem in Eq. (8.8) with ci being replaced with its approximation c̃i.

Let {θ∗i }ni=1 be the NE, then it satisfies

(η − θ∗i)>∇θi c̃i(θ∗i ,θ∗−i) ≥ 0,∀η ∈ Θ,∀i ∈ N (8.17)

where ∇θi c̃i(θ∗i ,θ∗−i) is the gradient of c̃i(θi,θ−i) with respect to θi and is evaluated at {θ∗i }ni=1.

Then, Eq. (8.17) is equivalent to the equations as follows:

(η − θ∗1)>∇θ1 c̃1(θ∗1,θ

∗
−1) ≥ 0,∀η ∈ Θ,

θ∗1 = θ∗j ,∀j ∈ N \ {1}
(8.18)

The reasons are: first, any solution of Eq. (8.17) satisfies Eq. (8.18), as {θ∗i }ni=1 is symmetric;

Second, any solution of Eq. (8.18) also satisfies Eq. (8.17). By definition of symmetric game,

if θ∗1 = θ∗j , then ∇θ1 c̃1(θ∗1,θ
∗
−1) = ∇θj c̃j(θ∗j ,θ∗−j), and we have

(η − θ∗j)>∇θj c̃j(θ∗j ,θ∗−j),∀η ∈ Θ,∀j ∈ N \ {1}

165

Hence, Eq. (8.17) and Eq. (8.18) are equivalent. Eq. (8.18) can be further rewritten as

(η − θ∗1)>∇θ1 c̃1(θ∗1,θ
∗
−1)|θ∗1=...=θ∗n ≥ 0,∀η ∈ Θ. (8.19)

We then let

F (θ∗1) = ∇θ1 c̃1(θ∗1,θ
∗
−1)|θ∗1=...=θ∗n

= 2X>(Xθ∗1 − y) +
2β(n+ 1)

λ2
||z− y||22θ∗1

>θ∗1θ
∗
1.

(8.20)

Then, F (θ∗1) = ∇θ1f(θ∗1) where f(·) is defined in Eq. (8.15). Hence, we have

(η − θ∗1)>∇θ1f(θ∗1) ≥ 0,∀η ∈ Θ, (8.21)

This means that θ∗1 is the solution of the optimization problem in Eq. (8.16) which finally

completes the proof.

A deeper look at Eq. (8.15) reveals that the Nash equilibrium can be obtained by each learner

independently, without knowing others’ actions. This means that the Nash equilibrium can

be computed in a distributed manner while the convergence is still guaranteed. Hence, our

proposed approach is highly scalable, as increasing the number of learners does not impact the

complexity of finding the Nash equilibrium. We investigate the robustness of this equilibrium

both using theoretical analysis and experiments in the remaining sections.

8.5 Robustness Analysis

We now draw a connection between the multi-learner equilibrium in the adversarial setting,

derived above, and robustness, in the spirit of the analysis by [125]. Specifically, we prove

166

the equivalence between Eq. (8.16) and a robust linear regression problem where data is

maliciously corrupted by some disturbance 4. Formally, a robust linear regression solves the

following problem:

min
θ∈Θ

max
4∈U
||y − (X + 4)θ||22, (8.22)

where the uncertainty set U = {4 ∈ Rm×d |4T4 = G : |Gij| ≤ c|θiθj| ∀i, j}, with

c = β(n+1)
2λ2
||z− y||22. Note that θ is a vector and θi is the i-th element of θ.

From a game-theoretic point of view, in training phase the defender is simulating an attacker.

The attacker maximizes the training error by adding disturbance to X. The magnitude of the

disturbance is controlled by a parameter c = β(n+1)
2λ2
||z− y||22. Consequently, the robustness

of Eq. (8.22) is guaranteed if and only if the magnitude reflects the uncertainty interval. This

sheds some light on how to choose λ, β and z in practice. One strategy is to over-estimate

the attacker’s strength, which amounts to choosing small values of λ, large values of β and

exaggerated target z. The intuition of this strategy is to enlarge the uncertainty set so as to

cover potential adversarial behavior. In Experiments section we will show this strategy works

well in practice. Another insight from Eq. (8.22) is that the fundamental reason MLSG is

robust is because it proactively takes adversarial behavior into account.

Theorem 6. The optimal solution θ∗ of the problem in Eq. (8.16) is an optimal solution to

the robust optimization problem in Eq. (8.22).

Proof. Fix θ∗, we show that

max
4∈U
||y − (X + 4)θ∗||22 = ||y −Xθ∗||22 + c(θ∗Tθ∗)

2
.

167

The left-hand side can be expanded as:

max
4∈U
||y − (X + 4)θ∗||22

= max
4∈U
||y −Xθ∗ −4θ∗||22

≤max
4∈U
||y −Xθ∗||22 + max

4∈U
||4θ∗||22

= max
4∈U
||y −Xθ∗||22 + max

4∈U
θ∗T4T4θ∗

(substitute 4T4 = G)

=||y −Xθ∗||22 + max
G
θ∗TGθ∗

=||y −Xθ∗||22 + max
G

d∑
i=1

|θ∗i |
2Gii + 2

d∑
j=1

j−1∑
i=1

θ∗i θ
∗
jGij

≤||y −Xθ∗||22 + c
d∑
i=1

|θ∗i |
4 + 2c

d∑
j=1

j−1∑
i=1

(θ∗i θ
∗
j)

2

=||y −Xθ∗||22 + c
(d∑
i=1

|θ∗i |2
)2

=||y −Xθ∗||22 + c(θ∗Tθ∗)
2
.

Now we define 4∗ = [
√
cθ∗1u, · · · ,

√
cθ∗nu], where θ∗i is the i-th element of θ∗ and u is defined

as:

u ,

y−Xθ∗

||y−Xθ∗||2 , if y 6= Xθ∗

any vector with unit L2 norm, otherwise
(8.23)

168

Then we have:

max
4∈U
‖y − (X + 4)θ∗‖2

2

≥||y − (X + 4∗)θ∗||22

=||y −Xθ∗ −4∗θ∗||22

=||y −Xθ∗ −
d∑
i=1

√
c|θ∗i |2u||22

(u is in the same direction as y −Xθ∗)

=||y −Xθ∗||22 + ||
d∑
i=1

√
c|θ∗i |2u||22

=||y −Xθ∗||22 + c(θ∗Tθ∗)
2

(8.24)

8.6 Experimental Results

8.6.1 Experimental Setup

As previously discussed, a dataset is represented by (X,y), where X is the feature matrix and

y is the vector of labels. We use (xj,yj) to denote the j-th instance and its corresponding

label. The dataset is equally divided into a training set (Xtrain,ytrain) and a testing set

(Xtest,ytest). We conducted experiments on three datasets: Wine Quality (red wine),PDF

malware (PDF), and Boston Housing Market (Boston). The number of learners is set to

5. Due to space limitation the experimental results for the Boston dataset are included in

Appendix C.6.

169

The Wine Quality dataset [18] contains 1599 instances and each instance has 11 features.

Those features are physicochemical and sensory measurements for wine. The response

variables are quality scores ranging from 0 to 10, where 10 represents for best quality and 0

for least quality. The PDF malware dataset consists of 18658 PDF files collected from the

internet. We employed an open-sourced tool mimicus16 to extract 135 real-valued features

from PDF files [103]. We then applied peepdf 17 to score each PDF between 0 and 10, with a

higher score indicating greater likelihood of being malicious.

Throughout, we abbreviate our proposed approach as MLSG, and compare it to three other

algorithms: ordinary least squares (OLS) regression, as well as Lasso, and Ridge regression

(Ridge). Lasso and Ridge are ordinary least square with L1 and L2 regularizers. In our

evaluation, we simulate the attacker for different values of β (the probability that a given

instance is maliciously manipulated). The specific attack targets z vary depending on the

dataset; we discuss these below. For our evaluation, we compute model parameters (for the

equilibrium, in the case of MLSG) on training data. We then use test data to compute optimal

attacks, characterized by Eq. (8.6). Let X′test be the test feature matrix after adversarial

manipulation, ŷAtest the associated predicted labels on manipulated test data, ŷtest predicted

labels on untainted test data, and ytest the ground truth labels for test data. We use root

expected mean square error (RMSE) as an evaluation metric, where the expectation is

with respect to the probability β of a particular instance being maliciously manipulated:√
β(ŷAtest−ytest)

T
(ŷAtest−ytest)+(1−β)(ŷtest−ytest)

T (ŷtest−ytest)

N
, where N is the size of the test data.

16https://github.com/srndic/mimicus
17https://github.com/rohit-dua/peePDF

170

8.6.2 The Red Wine Dataset

Recall that the response variables in red wine dataset are quality scores ranging from 0 to

10. We simulated an attacker whose target is to increase the overall scores of testing data.

In practice this could correspond to the scenario that wine sellers try to manipulate the

evaluation of third-party organizations. We formally define the attacker’s target as z = y + ∆,

where y is the ground-truth response variables and ∆ is a real-valued vector representing the

difference between the attacker’s target and the ground-truth. Since the maximum score is

10, any element of z that is greater than 10 is clipped to 10. We define ∆ to be homogeneous

(all elements are the same); generalization to heterogeneous values is direct. The mean and

standard deviation of y are µr = 5.64 and σr = 0.81. We let ∆ = 5σr × 1, where 1 is a

vector with all elements equal to one. The intuition for this definition is to simulate the

generating process of adversarial data. Specifically, by setting the attacker’s target to an

unrealistic value (i.e. in current case outside the 3σr of µr), the generated adversarial data

X
′ is supposed to be intrinsically different from X. For ease of exposition we use the term

defender to refer to MLSG.

Remember that in Eq. ((8.11)) there are three hyper-parameters in the defender’s loss

function: λ, β, and z. λ is the regularization coefficient in the attacker’s loss function shown

in Eq. ((8.4)). It is negatively proportional to the attacker’s strength. β is the probability of a

test data being malicious. z is the predication targets of the attacker. In practice these three

hyper-parameters are externally set by the attacker. In the first experiment below we assume

the defender knows the values of these three hyper-parameters, which corresponds to the best

case. The result is shown in Figure 8.1. Each bar is averaged over 50 runs, where at each run

we randomly sampled training and test data. The regularization parameters of Lasso and

Ridge were selected by cross-validation. Figure 8.1 demonstrates that MLSG approximate

171

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.5

1.0

1.5

2.0

R
M

S
E

Lasso
OLS
Ridge
MLSG

Figure 8.1: RMSE of y′ and y on the red wine dataset. The defender knows λ, β, and z.

equilibrium solution is significantly more robust than conventional linear regression learning,

with and without regularization.

In the second experiment we relaxed the assumption that the defender knows λ, β and z, and

instead simulated the practical scenario that the defender obtains estimates for these (for

example, from historical attack data), but the estimates have error. We denote by λ̂ = 0.5 and

β̂ = 0.8 the defender’s estimates of the true λ and β.18 Remember that β is the probability

of an instance being malicious and λ is negatively proportional to the attacker’s strength.

So the estimation characterizes a pessimistic defender that is expecting very strong attacks.

We experimented with two kinds of estimation about z: 1) the defender overestimates z:

ẑ = y + t1, where t is a random variable sampled from a uniform distribution over [5σr, 10];

and 2) the defender underestimates z: ẑ = y + t1, where t is sampled from [0, 5σr]. Here, we

only present the results for the latter; the former can be found in Appendix C.5. In Figure 8.2

the y-axis represents the actual values of λ, and the x-axis represents the actual values of β.

The color bar on the right of each figure visualizes the average RMSE. Each cell is averaged

over 50 runs. The result shows that even if there is a discrepancy between the defender’s

18We tried alternative values of λ̂ and β̂, and the results are consistent. We include these in Appendix C.5.

172

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
β

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

2
4
6
8

10

λ

0.8

1.6

2.4

3.2

4.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
β

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

2
4
6
8

10

λ

0.8

1.6

2.4

3.2

4.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
β

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

2
4
6
8

10

λ

0.8

1.6

2.4

3.2

4.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
β

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

2
4
6
8

10

λ

0.8

1.6

2.4

3.2

4.0

Figure 8.2: The average RMSE across different values of actual λ and β on the red wine
dataset. Upper Left: MLSG ; Upper Right: Lasso; Lower Left: Ridge; Lower Right: OLS.

estimation and the actual adversarial behavior, MLSG is consistently more robust than the

other approaches.

8.6.3 The PDF Dataset

The response variables of this dataset are malicious scores ranging between 0 and 10. The

mean and standard deviation of y are µp = 5.56 and σp = 2.66. Instead of letting the ∆ be

non-negative as in previous two datasets, the attacker’s target is to descrease the scores of

malicious PDFs. Consequently, we define ∆ = −2σp × 1M, whereM is the set of indices of

malicious PDF and 1M is a vector with only those elements indexed byM being one and

others being zero. Our experiments were conducted on a subset (3000 malicious PDF and

3000 benign PDF) randomly sampled from the original dataset. We evenly divided the subset

173

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
M

S
E

Lasso
OLS
Ridge
MLSG

Figure 8.3: RMSE of y′ and y on PDF dataset. The defender knows λ, β, and z.

into training and testing sets. We applied PCA for dimensionality reduction of the data and

selected the top-10 principal components as features. The result for best case is displayed in

Figure 8.3. Notice that when β = 0, MLSG is less robust than Lasso. This is to be expected,

as β = 0 corresponds to non-adversarial data.

Similarly as before we relaxed the assumption that the defender knows λ, β and z and let the

defender’s estimation of the true λ and β be λ̂ = 1.5 and β̂ = 0.5. We also experimented with

both overestimation and underestimation of z. The defender’s estimation is ẑ = y − t1M.

For overestimation setting t is sampled from [2σp, 3σp], and for underestimation setting it

is sampled from [σp, 2σp]. The result for underestimated ẑ is showed in Figure 8.4. Notice

that in the upper left plot of Figure 8.4 the area inside the blue rectangle corresponds to

those cases where λ̂ and β̂ are overestimated and they are more robust than the remaining

underestimated cases. Similar patterns can be observed in Figure 8.2. This further supports

our claim that it is advantageous to overestimate adversarial behavior.

174

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
β

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

2
4
6
8

10

λ

2.0

2.5

3.0

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
β

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

2
4
6
8

10

λ

2.0

2.5

3.0

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
β

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

2
4
6
8

10

λ

2.0

2.5

3.0

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
β

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

2
4
6
8

10

λ

2.0

2.5

3.0

3.5

Figure 8.4: The average RMSE across different values of actual λ and β on PDF dataset.
Upper Left: MLSG ; Upper Right: Lasso; Lower Left: Ridge; Lower Right: OLS.

8.7 Conclusion

In this chapter, we study the problem of linear regression in adversarial settings involving

multiple learners learning from the same or similar data. In our model, learners first

simultaneously decide on their models (i.e., learn), and an attacker then modifies test

instances to cause predictions to err towards the attacker’s target. We first derive an upper

bound on the cost functions of all learners, and the resulting approximate game. We then

show that this game has a unique symmetric equilibrium, and present an approach for

computing this equilibrium by solving a convex optimization problem. Finally, we show

that the equilibrium is robust, both theoretically, and through an extensive experimental

evaluation.

175

Chapter 9

Conclusion and Future Directions

This thesis focuses on the security problem of deploying machine learning systems in adversarial

settings. Starting with face recognition systems, we proposed FaceSec, a fine-grained

adversarial robustness evaluation framework in Chapter 3. FaceSec incorporates four

evaluation dimensions and can support evaluation of the vulnerability of different components

of face recognition systems. Using FaceSec, we performed a comprehensive evaluation on

five publicly available face recognition systems in various adversarial settings, and obtain

some meaningful findings. We believe that FaceSec can serve as a useful framework to

advance future research of adversarial learning in a broad array of machine learning systems

in addition to face recognition.

Before moving toward our own defense approaches, we revisited robust ML that uses the

conventional feature-space attack models. In Chapter 4, we proposed a general methodological

framework for evaluating the validity of robust ML against real attacks. We showed that

in the context of PDF Malware detection, defense approaches based on these feature-space

176

models may fail to yield ML models that are robust to realizable attacks. Our results suggest

that the practical usefulness of such approaches cannot be taken for granted.

To refine the feature-space attack model, we proposed to use conserved features in Chapter 5

to boost the robustness of feature-space models without compromising their mathematical

convenience. We showed that conserved features do exist, and once augmented with these

features, Robust ML exhibits generalizable robustness against multiple distinct realizable

attacks.

In addition to PDF malware detection, we also investigated adversarial robustness in image

classification. Specifically, in Chapter 6, we focused on cognitive modeling of non-salient

adversarial examples. We proposed the dual-perturbation attack, and showed that adversarial

training with our attack yields significantly greater generalizable robustness to different `p

attacks and aligns better with human perception than conventional robust ML models. We

believe these properties make our method a promising candidate for improving adversarial

training, the robustness of which is typically limited when facing different attacks.

After investigating robust ML models, we focused on deciding which of a large number of

alerts to choose for further investigation—often a necessary step in the detection pipeline. In

Chapter 7, we proposed a novel model and principled computational approach for robust alert

prioritization. The results showed that our method significantly outperforms non-strategic

approaches in nearly all cases, and prior strategic methods where these are feasible, even

when the assumptions of our threat model are violated. Our study reveals the benefits of

considering robustness of end-to-end systems when designing the full detection pipeline.

The last part of this thesis studied robust learning involving multiple learners and a single

attacker. In Chapter 8 we proposed a game-theoretic model for adversarial regression

with multiple learners. We showed that the proposed model has a unique pure-strategy

177

Nash Equilibrium, which is theoretically and empirically robust in adversarial settings. We

envision that our work can serve as a useful framework to advance future research of robust

decentralized learning.

Looking ahead, there are several future research directions.

Identifying Robust Features. In Chapter 5, we have shown that the key to robust ML

against realizable attacks is the collection of conserved features. However, the proposed

method for identifying conserved features is quite heuristic and incurs a large amount of

execution time on classifiers that employ a vast number of features (e.g., ML-based android

malware detectors can have one million features). On the other hand, recent work has

shown that adversarial examples can be directly attributed to the presence of non-robust

features [49]. Several open problems can be explored: How can we automatically identify

robust features? Can we construct robust features from non-robust features, e.g., by using a

non-linear combination of those?

General Defense against Realizable Attacks in Image Classification. Previous

studies have shown that CNNs are often vulnerable to physically realizable attacks [25, 97].

Particularly, in Chapter 3, our systematic and comprehensive adversarial evaluation has shown

the vulnerability of each component of face recognition systems. While there is numerous

work on adversarial defense against realizable attacks in image classification, none of them

provides a general paradigm in various settings. For example, [122], the state-of-the-art

defense for face recognition only works on particular neural architectures and attacks (as

shown in Chapter 3). Therefore, there are pressing needs for designing a general approach

against such realizable attacks.

Robust Machine Learning Inspired by Cognitive Science. In Chapter 6, we have

shown that the performance of adversarial training can be significantly improved if augmented

178

by cognitive science, and the resulting model aligns better with human perception than

conventional methods. This work motivates several new research questions. The first is how

we can effectively and reliably identify the foreground of an image. Most fixation models work

on all objects, but they can fail to provide an accurate foreground. In contrast, semantic

segmentation methods can provide a more accurate partition of foreground and background,

but are limited to specific objects. This calls for a principled paradigm to achieve both

accuracy and generalizability. Second, how can we quantify suspiciousness? While we provide

the first model to do so, there may be more effective ways.

179

References

[1] Martin Abadi et al. “TensorFlow: A system for large-scale machine learning.” In:
Proceedings of the 12th USENIX Symposium on Operating Systems Design and Imple-
mentation. 2016, pp. 265–283.

[2] Khalid Alsubhi, Issam Aib, and Raouf Boutaba. “FuzMet: A fuzzy-logic based alert
prioritization engine for intrusion detection systems.” In: International Journal of
Network Management 22.4 (2012), pp. 263–284.

[3] Bo An et al. “A deployed quantal response-based patrol planning system for the US
Coast Guard.” In: Interfaces 43.5 (2013), pp. 400–420.

[4] Anish Athalye, Nicholas Carlini, and David Wagner. “Obfuscated Gradients Give
a False Sense of Security: Circumventing Defenses to Adversarial Examples.” In:
International Conference on Machine Learning. 2018, pp. 274–283.

[5] Marc G Bellemare, Will Dabney, and Rémi Munos. “A distributional perspective
on reinforcement learning.” In: Proceedings of the 34th International Conference on
Machine Learning (ICML) – Volume 70. JMLR. 2017, pp. 449–458.

[6] Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li, and David Forsyth. “Unre-
stricted Adversarial Examples via Semantic Manipulation.” In: International Confer-
ence on Learning Representations. 2020.

[7] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli. “Evasion Attacks against Machine Learning
at Test Time.” In: European Conference on Machine Learning and Knowledge Discovery
in Databases. 2013, pp. 387–402.

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning. Information
Science and Statistics. Springer, 2011.

[9] M. Brückner and T. Scheffer. “Static Prediction Games for Adversarial Learning
Problems.” In: Journal of Machine Learning Research 13 (2012), pp. 2617–2654.

[10] Michael Brückner and Tobias Scheffer. “Stackelberg Games for Adversarial Prediction
Problems.” In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 2011, pp. 547–555.

180

[11] Anna L Buczak and Erhan Guven. “A survey of data mining and machine learning
methods for cyber security intrusion detection.” In: IEEE Communications Surveys &
Tutorials 18.2 (2016), pp. 1153–1176.

[12] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisserman. “Vggface2:
A dataset for recognising faces across pose and age.” In: 2018 13th IEEE International
Conference on Automatic Face & Gesture Recognition (FG 2018). IEEE. 2018, pp. 67–
74.

[13] Nicholas Carlini and David A. Wagner. “Towards Evaluating the Robustness of Neural
Networks.” In: IEEE Symposium on Security and Privacy (2017), pp. 39–57.

[14] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. “Zoo:
Zeroth order optimization based black-box attacks to deep neural networks without
training substitute models.” In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security. 2017, pp. 15–26.

[15] Shih-Fen Cheng, Daniel M. Reeves, Yevgeniy Vorobeychik, and Michael P. Wellman.
“Notes on Equilibria in Symmetric Games.” In: International Workshop on Game
Theoretic and Decision Theoretic Agents. 2004, pp. 71–78.

[16] Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. “Certified Adversarial Robust-
ness via Randomized Smoothing.” In: International Conference on Machine Learning.
2019.

[17] Tianji Cong and Atul Prakash. Masked MS-COCO for robust image classification.
https://github.com/superctj/Masked_MSCOCO. 2019.

[18] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis.
“Modeling Wine Preferences by Data Mining from Physicochemical Properties.” In:
Decision Support Systems 47.4 (2009), pp. 547–553.

[19] M. Cova, C. Kruegel, and G. Vigna. “Detection and analysis of drive- by-download
attacks and malicious JavaScript code.” In: International Conference on World Wide
Web. 2010, pp. 281–290.

[20] Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. “Adver-
sarial Classification.” In: SIGKDD International Conference on Knowledge Discovery
and Data Mining. 2004, pp. 99–108.

[21] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. “ImageNet: A large-scale
hierarchical image database.” In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition. 2009, pp. 248–255.

[22] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. “Arcface: Additive
angular margin loss for deep face recognition.” In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2019, pp. 4690–4699.

[23] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. “Boosting adversarial attacks with momentum.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 9185–9193.

181

https://github.com/superctj/Masked_MSCOCO

[24] Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and Jun
Zhu. “Efficient decision-based black-box adversarial attacks on face recognition.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 7714–7722.

[25] Kevin Eykholt et al. “Robust Physical-World Attacks on Deep Learning Visual
Classification.” In: Computer Vision and Pattern Recognition. 2018.

[26] FaceNet Using Pytorch. https://github.com/timesler/facenet-pytorch.

[27] Prahlad Fogla and Wenke Lee. “Evading Network Anomaly Detection Systems: For-
mal Reasoning and Practical Techniques.” In: ACM Conference on Computer and
Communications Security. 2006, pp. 59–68.

[28] Prahlad Fogla, Monirul Sharif, Roberto Perdisci, Oleg Kolesnikov, and Wenke Lee.
“Polymorphic Blending Attacks.” In: USENIX Security Symposium. 2006.

[29] Meire Fortunato et al. “Noisy networks for exploration.” In: arXiv preprint arXiv:1706.10295
(2017).

[30] Justin Gilmer, Ryan P. Adams, Ian J. Goodfellow, David Andersen, and George E.
Dahl. “Motivating the Rules of the Game for Adversarial Example Research.” In: arXiv
preprint. 2018.

[31] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks.” In: Proceedings of the 13th international conference on
artificial intelligence and statistics (AISTAT). 2010, pp. 249–256.

[32] I. Goodfellow, J. Pouget, M. Mirza, B. Xu, D. Warde, S. Ozair, A. Courville, and
Y. Bengio. “Generative Adversarial Nets.” In: Neural Information Processing Systems.
2014, pp. 2672–2680.

[33] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing
Adversarial Examples.” In: International Conference on Learning Representations.
2015.

[34] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick
McDaniel. “Adversarial Perturbations Against Deep Neural Networks for Malware
Classification.” In: European Symposium on Research in Computer Security. 2017.

[35] Claudio Guarnieri, Alessandro Tanasi, Jurriaan Bremer, and Mark Schloesser. Cuckoo
Sandbox: A Malware Analysis System. http://www.cuckoosandbox.org/. 2012.

[36] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. “Ms-celeb-1m:
A dataset and benchmark for large-scale face recognition.” In: European conference on
Computer Vision. Springer. 2016, pp. 87–102.

[37] K. He, X. Zhang, S. Ren, and J. Sun. “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification.” In: Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV). 2015, pp. 1026–1034.

182

https://github.com/timesler/facenet-pytorch

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 770–778.

[39] Sen He and Nicolas Pugeault. “Salient Region Segmentation.” In: arXiv preprint
arXiv:1803.05759 (2018).

[40] Matteo Hessel et al. “Rainbow: Combining improvements in deep reinforcement
learning.” In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence.
AAAI. 2018.

[41] Nicholas J. Higham. “Analysis of the Cholesky decomposition of a semi-definite
matrix.” In: Reliable Numerical Computation. University Press, 1990, pp. 161–185.

[42] Grant Ho, Aashish Sharma, Mobin Javed, Vern Paxson, and David Wagner. “Detecting
credential spearphishing in enterprise settings.” In: Proceedings of the 26th USENIX
Security Symposium (USENIX Security). 2017, pp. 469–485.

[43] Holger H. Hoos and Thomas Stutzle. Stochastic Local Search : Foundations & Appli-
cations. Morgan Kaufmann, 2004.

[44] Junling Hu, Michael P Wellman, et al. “Multiagent reinforcement learning: theoretical
framework and an algorithm.” In: Proceedings of the 15th International Conference on
Machine Learning (ICML). Vol. 98. 1998, pp. 242–250.

[45] Junling Hu and Michael P Wellman. “Nash Q-learning for general-sum stochastic
games.” In: Journal of Machine Learning Research 4.Nov (2003), pp. 1039–1069.

[46] W. Hu and Y. Tan. “Generating Adversarial Malware Examples for Black-Box Attacks
Based on GAN.” In: arXiv preprint. 2017.

[47] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled Faces
in the Wild: A Database for Studying Face Recognition in Unconstrained Environments.
Tech. rep. 07-49. University of Massachusetts, Amherst, 2007.

[48] Neminath Hubballi and Vinoth Suryanarayanan. “False alarm minimization techniques
in signature-based intrusion detection systems: A survey.” In: Computer Communica-
tions 49 (2014), pp. 1–17.

[49] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran,
and Aleksander Madry. “Adversarial Examples are not Bugs, they are Features.” In:
NeurIPS’19.

[50] Anil K Jain and Stan Z Li. Handbook of face recognition. Vol. 1. Springer, 2011.

[51] Alex Kantchelian, J. D. Tygar, and Anthony D. Joseph. “Evasion and Hardening of
Tree Ensemble Classifiers.” In: International Conference on Machine Learning. 2016,
pp. 2387–2396.

[52] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization.”
In: arXiv preprint arXiv:1412.6980 (2014).

183

[53] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization.”
In: CoRR abs/1412.6980 (2015).

[54] Dmytro Korzhyk, Zhengyu Yin, Christopher Kiekintveld, Vincent Conitzer, and
Milind Tambe. “Stackelberg vs. Nash in Security Games: An Extended Investigation of
Interchangeability, Equivalence, and Uniqueness.” In: Journal of Artificial Intelligence
Research 41 (2011), pp. 297–327.

[55] M. Kümmerer, T. S. A. Wallis, L. A. Gatys, and M. Bethge. “Understanding Low- and
High-Level Contributions to Fixation Prediction.” In: IEEE International Conference
on Computer Vision. 2017.

[56] Aron Laszka, Yevgeniy Vorobeychik, Daniel Fabbri, Chao Yan, and Bradley Malin. “A
Game-Theoretic Approach for Alert Prioritization.” In: AAAI Workshop on Artificial
Intelligence for Cyber Security (AICS). 2017.

[57] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana. “Certified Robustness
to Adversarial Examples with Differential Privacy.” In: IEEE Symposium on Security
and Privacy. 2019.

[58] Bo Li and Yevgeniy Vorobeychik. “Evasion-robust classification on binary domains.”
In: ACM Transactions on Knowledge Discovery from Data (2018).

[59] Bo Li and Yevgeniy Vorobeychik. “Feature Cross-substitution in Adversarial Classi-
fication.” In: Advances in Neural Information Processing Systems. 2014, pp. 2087–
2095.

[60] Zhengfa Liang, Yiliu Feng, Yulan Guo, Hengzhu Liu, Wei Chen, Linbo Qiao, Li Zhou,
and Jianfeng Zhang. “Learning for disparity estimation through feature constancy.”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 2811–2820.

[61] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. “Continuous control with deep rein-
forcement learning.” In: arXiv preprint arXiv:1509.02971 (2015).

[62] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. “Microsoft coco: Common objects in
context.” In: European conference on computer vision. Springer. 2014, pp. 740–755.

[63] Michael L Littman. “Friend-or-foe Q-learning in general-sum games.” In: Proceedings
of the 18th International Conference on Machine Learning (ICML). Vol. 1. 2001,
pp. 322–328.

[64] Michael L Littman. “Markov games as a framework for multi-agent reinforcement learn-
ing.” In: Proceedings of the 11th International Conference on International Conference
on Machine Learning (ICML). Elsevier, 1994, pp. 157–163.

[65] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song.
“Sphereface: Deep hypersphere embedding for face recognition.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 212–220.

184

[66] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. “Large-Margin Softmax
Loss for Convolutional Neural Networks.” In: Proceedings of The 33rd International
Conference on Machine Learning. 2016, pp. 507–516.

[67] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. “Delving into transferable
adversarial examples and black-box attacks.” In: arXiv preprint arXiv:1611.02770
(2016).

[68] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks
for semantic segmentation.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 3431–3440.

[69] Daniel Lowd and Christopher Meek. “Adversarial Learning.” In: ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining. 2005, pp. 641–647.

[70] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. “Multi-
agent actor-critic for mixed cooperative-competitive environments.” In: Proceedings of
the 31st International Conference on Neural Information Processing Systems (NIPS).
2017, pp. 6382–6393.

[71] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. “Towards deep learning models resistant to adversarial attacks.” In:
International Conference on Learning Representations. 2018.

[72] Davide Maiorca, Igino Corona, and Giorgio Giacinto. “Looking at the bag is not
enough to find the bomb: an evasion of structural methods for malicious PDF files
detection.” In: ACM Asia Conference on Computer and Communications Security.
2013, pp. 119–130.

[73] Mohammad Hossein Manshaei, Quanyan Zhu, Tansu Alpcan, Tamer Bacşar, and
Jean-Pierre Hubaux. “Game theory meets network security and privacy.” In: ACM
Computing Surveys (CSUR) 45.3 (2013), p. 25.

[74] Patrick Maupin. PDFRW: A Pure Python library That Reads and Writes PDFs.
https://github.com/pmaupin/pdfrw. Accessed: 2017-05-18. 2017.

[75] H. B. McMahan, G. J. Gordon, and A. Blum. “Planning in the Presence of Cost
Functions Controlled by an Adversary.” In: Proceedings of the 20th International
Conference on Machine Learning (ICML). 2003, pp. 536–543.

[76] Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avritzer, and Bryan
D Payne. “Evaluating computer intrusion detection systems: A survey of common
practices.” In: ACM Computing Surveys (CSUR) 48.1 (2015), p. 12.

[77] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. “Asynchronous methods
for deep reinforcement learning.” In: Proceedings of the 33rd International Conference
on International Conference on Machine Learning (ICML) – Volume 48. 2016, pp. 1928–
1937.

185

[78] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. “Playing Atari with deep reinforcement learn-
ing.” In: arXiv preprint arXiv:1312.5602 (2013).

[79] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning.”
In: Nature 518.7540 (2015), p. 529.

[80] Jeet Mohapatra, Tsui Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. “To-
wards verifying robustness of neural networks against semantic perturbations.” In:
International Conference on Learning Representations. 2020.

[81] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.
“Universal adversarial perturbations.” In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pp. 1765–1773.

[82] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. “Deepfool:
a simple and accurate method to fool deep neural networks.” In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016, pp. 2574–2582.

[83] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song. “Practical black-box attacks
on deep neural networks using efficient query mechanisms.” In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018, pp. 154–169.

[84] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. “Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples.” In: arXiv
preprint arXiv:1605.07277 (2016).

[85] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. “The limitations of deep learning in adversarial settings.” In:
2016 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE. 2016,
pp. 372–387.

[86] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. “To-
wards the Science of Security and Privacy in Machine Learning.” In: IEEE European
Symposium on Security and Privacy. 2018.

[87] Nicolas Papernot, Patrick McDaniel, Xi Wu, and Somesh Jha. “Distillation as a Defense
to Adversarial Perturbations against Deep Neural Networks.” In: IEEE Symposium on
Security and Privacy, 2016.

[88] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. “Deep Face Recognition.”
In: Proceedings of the British Machine Vision Conference (BMVC). 2015, pp. 41.1–
41.12.

[89] José Luis Pech-Pacheco, Gabriel Cristóbal, Jesús Chamorro-Martinez, and Joaquín
Fernández-Valdivia. “Diatom autofocusing in brightfield microscopy: a comparative
study.” In: Proceedings 15th International Conference on Pattern Recognition. ICPR-
2000. Vol. 3. IEEE. 2000, pp. 314–317.

[90] PyTorch implementation of Additive Angular Margin Loss for Deep Face Recognition.
https://github.com/foamliu/InsightFace-v2.

186

https://github.com/foamliu/InsightFace-v2

[91] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. “Certified defenses against
adversarial examples.” In: International Conference on Learning Representations. 2018.

[92] J Ben Rosen. “Existence and Uniqueness of Equilibrium Points for Concave N-person
Games.” In: Econometrica (1965), pp. 520–534.

[93] Saeed Salah, Gabriel Maciá-Fernández, and Jesús E Díaz-Verdejo. “A model-based
survey of alert correlation techniques.” In: Computer Networks 57.5 (2013), pp. 1289–
1317.

[94] Aaron Schlenker et al. “Don’t Bury your Head in Warnings: A Game-Theoretic
Approach for Intelligent Allocation of Cyber-security Alerts.” In: Proceedings of the
26th International Joint Conference on Artificial Intelligence (IJCAI). 2017, pp. 381–
387. doi: 10.24963/ijcai.2017/54.

[95] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified embed-
ding for face recognition and clustering.” In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2015, pp. 815–823.

[96] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. “Toward Generat-
ing a New Intrusion Detection Dataset and Intrusion Traffic Characterization.” In:
Proceedings of the 4th International Conference on Information Systems Security
and Privacy (ICISSP) – Volume 1. INSTICC. SciTePress, 2018, pp. 108–116. doi:
10.5220/0006639801080116.

[97] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. “Accessorize
to a crime: Real and stealthy attacks on state-of-the-art face recognition.” In: ACM
SIGSAC Conference on Computer and Communications Security. ACM. 2016, pp. 1528–
1540.

[98] Yash Sharma and Pin-Yu Chen. “Attacking the Madry Defense Model with L1-based
Adversarial Examples.” In: ICLR-18 Workshops. 2018.

[99] C. Smutz and A. Stavrou. Malicious PDF Detection Using Matadata and Structural
Features. Tech. rep. 2012.

[100] C. Smutz and A. Stavrou. “Malicious PDF detection using matadata structural
features.” In: Annual Computer Security Applications Conference. 2012, pp. 239–248.

[101] Robin Sommer and Vern Paxson. “Outside the closed world: On using machine learning
for network intrusion detection.” In: 2010 IEEE symposium on security and privacy.
IEEE. 2010, pp. 305–316.

[102] N. Šrndic and P. Laskov. “Detection of Malicious PDF Files Based on Hierarchical
Document Structure.” In: Network and Distributed System Security Symposium. 2013.

[103] N. Šrndic and P. Laskov. “Practical Evasion of a Learning-Based Classifier: A Case
Study.” In: IEEE Symposium on Security and Privacy. 2014, pp. 197–211.

[104] Nedim Šrndić and Pavel Laskov. “Hidost: a static machine-learning-based detector of
malicious files.” In: EURASIP Journal on Information Security 2016.1 (2016), p. 22.

187

https://doi.org/10.24963/ijcai.2017/54
https://doi.org/10.5220/0006639801080116

[105] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. “Deep learning face rep-
resentation by joint identification-verification.” In: Advances in Neural Information
Processing Systems. 2014, pp. 1988–1996.

[106] Yi Sun, Xiaogang Wang, and Xiaoou Tang. “Deep learning face representation from
predicting 10,000 classes.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2014, pp. 1891–1898.

[107] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. “Inception-v4,
inception-resnet and the impact of residual connections on learning.” In: arXiv preprint
arXiv:1602.07261 (2016).

[108] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. “Intriguing properties of neural networks.” In:
International Conference on Learning Representations. 2014.

[109] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. “Deepface: Closing
the gap to human-level performance in face verification.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2014, pp. 1701–1708.

[110] Gerald Tesauro. “TD-Gammon, a self-teaching backgammon program, achieves master-
level play.” In: Neural Computation 6.2 (1994), pp. 215–219.

[111] Anne M Treisman and Garry Gelade. “A feature-integration theory of attention.” In:
Cognitive psychology 12.1 (1980), pp. 97–136.

[112] Jason Tsai, Thanh H. Nguyen, and Milind Tambe. “Security Games for Controlling
Contagion.” In: Proceedings of the 26th AAAI Conference on Artificial Intelligence.
AAAI’12. Toronto, Ontario, Canada: AAAI Press, 2012, pp. 1464–1470.

[113] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-
sander Madry. “Robustness May Be at Odds with Accuracy.” In: International Con-
ference on Learning Representations. 2019.

[114] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser, and Mathias Fis-
cher. “Taxonomy and survey of collaborative intrusion detection.” In: ACM Computing
Surveys (CSUR) 47.4 (2015), p. 55.

[115] Yevgeniy Vorobeychik and Murat Kantarcioglu. Adversarial Machine Learning. Morgan
and Claypool, 2018.

[116] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng
Li, and Wei Liu. “Cosface: Large margin cosine loss for deep face recognition.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 5265–5274.

[117] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando
Freitas. “Dueling Network Architectures for Deep Reinforcement Learning.” In: Pro-
ceedings of the 33rd International Conference on International Conference on Machine
Learning (ICML). 2016, pp. 1995–2003.

188

[118] Christopher JCH Watkins and Peter Dayan. “Q-learning.” In: Machine learning 8.3-4
(1992), pp. 279–292.

[119] Christopher John Cornish Hellaby Watkins. “Learning from delayed rewards.” PhD
thesis. King’s College, Cambridge, 1989.

[120] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. “A discriminative feature
learning approach for deep face recognition.” In: European Conference on Computer
Vision. Springer. 2016, pp. 499–515.

[121] Eric Wong and J. Zico Kolter. “Provable defenses against adversarial examples via the
convex outer adversarial polytope.” In: International Conference on Machine Learning.
2018.

[122] Tong Wu, Liang Tong, and Yevgeniy Vorobeychik. “Defending Against Physically
Realizable Attacks on Image Classification.” In: 8th International Conference on
Learning Representations (ICLR). 2020.

[123] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille.
“Adversarial examples for semantic segmentation and object detection.” In: Proceedings
of the IEEE International Conference on Computer Vision. 2017, pp. 1369–1378.

[124] H. Xu, C. Caramanis, and S. Mannor. “Robustness and Regularization of Support
Vector Machines.” In: Journal of Machine Learning Research 10 (2009), pp. 1485–1510.

[125] Huan Xu, Constantine Caramanis, and Shie Mannor. “Robust Regression and Lasso.”
In: Advances in Neural Information Processing Systems. 2009, pp. 1801–1808.

[126] Weilin Xu, Yanjun Qi, and David Evans. “Automatically Evading Classifiers: A Case
Study on PDF Malware Classifiers.” In: Network and Distributed System Security
Symposium. 2016.

[127] C. Yan, B. Li, Y. Vorobeychik, A. Laszka, D. Fabbri, and B. Malin. “Get Your Workload
in Order: Game Theoretic Prioritization of Database Auditing.” In: Proceedings of the
34th IEEE International Conference on Data Engineering (ICDE). 2018, pp. 1304–
1307. doi: 10.1109/ICDE.2018.00136.

[128] Xiao Yang, Dingcheng Yang, Yinpeng Dong, Wenjian Yu, Hang Su, and Jun Zhu.
“Delving into the Adversarial Robustness on Face Recognition.” In: arXiv preprint
arXiv:2007.04118 (2020).

[129] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. “Learning face representation from
scratch.” In: arXiv preprint arXiv:1411.7923 (2014).

[130] F. Zhang, P.P.K. Chan, B Biggio, D.S. Yeung, and F. Roli. “Adversarial feature
selection against evasion attacks.” In: IEEE Transactions on Cybernetics (2015).

[131] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. “Joint Face Detection and Alignment Using
Multitask Cascaded Convolutional Networks.” In: IEEE Signal Processing Letters
23.10 (2016), pp. 1499–1503. doi: 10.1109/LSP.2016.2603342.

189

https://doi.org/10.1109/ICDE.2018.00136
https://doi.org/10.1109/LSP.2016.2603342

[132] Yan Zhou, Murat Kantarcioglu, Bhavani M. Thuraisingham, and Bowei Xi. “Adversarial
Support Vector Machine Learning.” In: ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 2012, pp. 1059–1067.

190

Appendix A

Supplement for Chapter 3

A.1 Robustness of Face Recognition Components

A.1.1 Open-Set Systems Under Dodging Attacks

To study the robustness of open-set system components under dodging attacks, we employ six

different face recognition systems and then evaluate the attack success rates of dodging attacks

corresponding to different target and surrogate face recognition models. Specifically, besides

the five systems (VGGFace, FaceNet, ArcFace18, ArcFace50, and ArcFace101) presented in

Table 3.4 of Chapter 3, we build a face recognition model by training FaceNet [95] using the

VGGFace2 dataset [12] (henceforth, FaceNet+). Here, FaceNet and FaceNet+ are trained

using the same neural architecture but different training sets, while the ArcFace variations

share the same training data but with different architectures. The results are presented in

Fig. A.1.

[191]

VGGFace
FaceNet

FaceNet+
ArcFace18

ArcFace50

ArcFace101
Surrogate

VGGFace

FaceNet

FaceNet+

ArcFace18

ArcFace50

ArcFace101

Ta
rg

et
1.00 0.26 0.50 0.19 0.15 0.18

0.55 1.00 0.94 0.25 0.23 0.22

0.41 0.47 1.00 0.09 0.06 0.10

0.48 0.28 0.36 1.00 0.57 0.48

0.53 0.30 0.36 0.51 1.00 0.59

0.43 0.24 0.38 0.43 0.58 1.00

PGD | Dodging | Open-set

0.2

0.4

0.6

0.8

1.0

Attack Success Rate

VGGFace
FaceNet

FaceNet+
ArcFace18

ArcFace50

ArcFace101
Surrogate

VGGFace

FaceNet

FaceNet+

ArcFace18

ArcFace50

ArcFace101

Ta
rg

et

1.00 0.79 0.76 0.73 0.71 0.66

0.54 1.00 0.61 0.34 0.34 0.37

0.26 0.40 1.00 0.11 0.12 0.09

0.29 0.10 0.12 0.99 0.22 0.14

0.28 0.21 0.23 0.20 0.99 0.20

0.20 0.18 0.15 0.21 0.23 1.00

Eyeglass Frame | Dodging | Open-set

0.2

0.4

0.6

0.8

1.0
Attack Success Rate

VGGFace
FaceNet

FaceNet+
ArcFace18

ArcFace50

ArcFace101
Surrogate

VGGFace

FaceNet

FaceNet+

ArcFace18

ArcFace50

ArcFace101

Ta
rg

et

1.00 0.56 0.52 0.48 0.52 0.48

0.13 1.00 0.15 0.10 0.12 0.11

0.02 0.01 1.00 0.02 0.02 0.02

0.26 0.16 0.15 1.00 0.29 0.22

0.25 0.25 0.21 0.27 1.00 0.23

0.13 0.10 0.10 0.13 0.13 0.99

Sticker | Dodging | Open-set

0.2

0.4

0.6

0.8

1.0

Attack Success Rate

VGGFace
FaceNet

FaceNet+
ArcFace18

ArcFace50

ArcFace101
Surrogate

VGGFace

FaceNet

FaceNet+

ArcFace18

ArcFace50

ArcFace101

Ta
rg

et

1.00 0.67 0.72 0.69 0.69 0.70

0.62 1.00 0.63 0.48 0.53 0.52

0.34 0.40 1.00 0.20 0.26 0.23

0.56 0.51 0.46 0.98 0.56 0.49

0.66 0.65 0.58 0.63 0.99 0.72

0.69 0.56 0.61 0.63 0.66 1.00

Face Mask | Dodging | Open-set

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Attack Success Rate

Figure A.1: Attack success rate of dodging attacks with different open-set target and surrogate
models. Upper left: PGD attack. Upper right: Eyeglass frame attack. Lower left: Sticker
attack. Lower right: Face mask attack.

We have the following two observations, which are similar to those observed from dodging

attacks on closed-set systems in the main paper. First, in most cases, an open-set system’s

neural architecture is more fragile than its training set. For example, under the PGD attack,

adversarial examples in response to FaceNet+ have a 94% success rate on FaceNet (which

is trained using the same architecture but different training data), while the success rates

among the ArcFace systems (which are built with the same training set but different neural

architectures) are only around 50%. However, there are also some cases where the neural

architecture exhibits similar robustness to the training set. For example, when black-box

[192]

Table A.1: Attack success rate of impersonation attacks on closed-set face recognition systems
by the attacker’s system knowledge. Z represents zero knowledge, T is training set, A is
neural architecture, and F represents full knowledge.

Target System Attack Type Attacker’s System Knowledge
Z T A F

VGGFace

PGD 0.11 0.21 0.35 1.00
Eyeglass Frame 0.01 0.01 0.03 0.95

Sticker 0.00 0.00 0.00 1.00
Face Mask 0.00 0.01 0.02 1.00

FaceNet

PGD 0.23 0.32 1.00 1.00
Eyeglass Frame 0.00 0.00 0.28 0.99

Sticker 0.01 0.00 0.21 1.00
Face Mask 0.00 0.00 0.26 0.99

ArcFace18

PGD 0.18 0.25 0.69 1.00
Eyeglass Frame 0.01 0.01 0.05 0.89

Sticker 0.00 0.00 0.01 0.94
Face Mask 0.01 0.01 0.03 0.77

ArcFace50

PGD 0.13 0.15 0.45 0.87
Eyeglass Frame 0.02 0.02 0.03 0.67

Sticker 0.00 0.00 0.00 0.58
Face Mask 0.01 0.01 0.01 0.60

ArcFace101

PGD 0.14 0.16 0.42 0.96
Eyeglass Frame 0.00 0.00 0.03 0.58

Sticker 0.00 0.00 0.00 0.50
Face Mask 0.01 0.01 0.04 0.73

attacks are too weak (under sticker attack), both neural architecture and training set are

robust; when the attacks are too strong (under face mask attack), these two components

exhibit similar levels of vulnerability. Second, the grid-level face mask attack is considerably

more effective than the PGD attack, and significantly more potent than other physically

realizable attacks. Like dodging attacks in closed-set settings, most black-box pixel-level

physically realizable attacks have relatively low transferability on open-set face recognition

systems, with only about 20% success rate.

[193]

VGGFace
FaceNet

FaceNet+
ArcFace18

ArcFace50

ArcFace101
Surrogate

VGGFace

FaceNet

FaceNet+

ArcFace18

ArcFace50

ArcFace101

Ta
rg

et
1.00 0.21 0.24 0.02 0.00 0.03

0.64 1.00 0.70 0.18 0.12 0.21

0.52 0.67 1.00 0.12 0.12 0.16

0.47 0.34 0.30 1.00 0.60 0.48

0.22 0.17 0.19 0.47 1.00 0.46

0.23 0.24 0.26 0.31 0.38 1.00

PGD | Impersonation | Open-set

0.0

0.2

0.4

0.6

0.8

1.0

Attack Success Rate

VGGFace
FaceNet

FaceNet+
ArcFace18

ArcFace50

ArcFace101
Surrogate

VGGFace

FaceNet

FaceNet+

ArcFace18

ArcFace50

ArcFace101

Ta
rg

et

0.93 0.00 0.00 0.00 0.00 0.00

0.02 0.96 0.01 0.00 0.00 0.00

0.01 0.05 0.96 0.00 0.00 0.01

0.09 0.11 0.05 1.00 0.12 0.09

0.01 0.02 0.01 0.03 1.00 0.02

0.01 0.01 0.03 0.02 0.02 1.00

Eyeglass Frame | Impersonation | Open-set

0.0

0.2

0.4

0.6

0.8

1.0
Attack Success Rate

VGGFace
FaceNet

FaceNet+
ArcFace18

ArcFace50

ArcFace101
Surrogate

VGGFace

FaceNet

FaceNet+

ArcFace18

ArcFace50

ArcFace101

Ta
rg

et

1.00 0.00 0.00 0.00 0.00 0.00

0.01 1.00 0.02 0.01 0.02 0.01

0.02 0.02 0.98 0.03 0.03 0.03

0.08 0.04 0.07 1.00 0.06 0.06

0.02 0.01 0.02 0.01 1.00 0.02

0.03 0.02 0.01 0.03 0.04 1.00

Sticker | Impersonation | Open-set

0.0

0.2

0.4

0.6

0.8

1.0

Attack Success Rate

VGGFace
FaceNet

FaceNet+
ArcFace18

ArcFace50

ArcFace101
Surrogate

VGGFace

FaceNet

FaceNet+

ArcFace18

ArcFace50

ArcFace101

Ta
rg

et

0.92 0.01 0.01 0.01 0.01 0.01

0.00 0.87 0.00 0.00 0.00 0.00

0.01 0.03 0.93 0.02 0.00 0.01

0.04 0.05 0.05 0.99 0.05 0.04

0.00 0.00 0.00 0.01 0.91 0.00

0.01 0.00 0.00 0.00 0.01 0.98

Face Mask | Impersonation | Open-set

0.0

0.2

0.4

0.6

0.8 Attack Success Rate

Figure A.2: Attack success rate of impersonation attacks with different open-set target and
surrogate models. Upper left: PGD attack. Upper right: Eyeglass frame attack. Lower left:
Sticker attack. Lower right:Face mask attack.

A.1.2 Closed-Set Systems Under Impersonation Attacks

Here, we use impersonation attacks to evaluate the robustness of closed-set systems. In our

experiments, all the closed-set models are 100-class classifiers, as introduced in Section 3.3.

For any input face image x and its identity y ∈ [0, 99], we let the target identity of the

impersonation attack to be yt = (y + 1)%100. An impersonation attack is successful only

when the resulting adversarial example is misclassified as the target identity yt. The results

are shown in Table A.1.

[194]

We have two key findings. First, compared to Table 3.5 of Chapter 3, we observe that closed-

set systems are significantly more robust to impersonation attacks than dodging attacks.

Especially when an attacker has no accurate knowledge about the target system, the attack

success rate of physically realizable attacks can be as low as 0%. Second, it can be seen that

closed-set systems exhibit moderate robustness against digital impersonation attacks. In

such attacks, the knowledge of neural architecture is significantly more important than the

training set. For example, by knowing the neural architecture of ArcFace18, a PGD attack

can achieve a 69% success rate. In contrast, this rate drops to 25% when only the training

set is visible to the attacker.

A.1.3 Open-Set Systems Under Impersonation Attacks

To evaluate impersonation attacks on open-set systems, we randomly select 100 pairs from the

LFW dataset [47]. Each pair contains two face images corresponding to different identities. We

let one image as the input x and the other as the target gallery image x∗t . An impersonation

attack is successful only when the resulting adversarial example and x∗t are verified as the

same identity. The experimental results are presented in Fig. A.2.

Similar to the impersonation attacks on closed-set systems, we have the following two

observations that are consistent with our previous summary. First, open-set systems are very

robust to black-box impersonation physically realizable attacks. In most cases, these attacks

can only achieve a success rate of less than 10%. In contrast, the PGD attack is significantly

more potent. And under this attack, the neural architecture is considerably more vulnerable

than the training set (e.g., comparing FaceNet variations to ArcFace models).

[195]

A.2 Efficacy of Using Momentum and Ensemble Models

in Transfer-based Attacks

Next, we evaluate the efficacy of using momentum and ensemble-based surrogate models in

transfer-based dodging attacks. For a given closed-set target face recognition system, we

first train a surrogate model using the same training data. Specifically, we use both a single

surrogate trained on a different architecture19, and an ensembled surrogate by ensembling

the other four systems in the way described in Section 3.2 of the main paper. We then

produce white-box dodging attacks on the surrogate and evaluate the resulting examples’

attack success rate on the target model. For each attack, we compare the momentum method

(i.e., w/ mmt) and the conventional gradient-based approach (i.e., w/o mmt). The results

are shown in Table A.2, A.3, A.4, and A.5.

We have two key observations. First, both ensemble and momentum contribute to stronger

transferability, although in most cases, ensemble contributes more. For example, the ensemble

method can boost the transferability of PGD attacks on FaceNet by 31%, while the improve-

ment by momentum is only about 10%. Second, the efficacy of momentum and ensemble

models is highly dependent on the nature of perturbation. For digital attacks, these methods

combined can significantly improve transferability by up to 55%. In grid-level face mask

attacks, the improvement is as considerable as up to 16%. However, both methods can only

marginally boost the transferability of pixel-level realizable attacks. Especially in the sticker

attacks, the improvement is nearly negligible. We leave effective transfer-based pixel-level

physically realizable attacks as an open problem for future research.

19For a given target model, we trained four single surrogates corresponding to the other four architectures.
Below, we only present the result of the surrogate that has the highest attack success rate.

[196]

Table A.2: Attack success rate of dodging PGD attacks on closed-set face recognition systems.
Here, only the target system’s training data is visible to the attacker, and we use different
surrogate models.

Target System
Surrogate System

Single Ensemble
w/o mmt w/ mmt w/o mmt w/ mmt

VGGFace 0.08 0.16 0.43 0.51
FaceNet 0.42 0.52 0.73 0.83
ArcFace18 0.42 0.51 0.87 0.92
ArcFace50 0.35 0.55 0.86 0.90
ArcFace101 0.32 0.39 0.71 0.78

Table A.3: Attack success rate of dodging eyeglass frame attacks on closed-set face recognition
systems. Here, only the target system’s training data is visible to the attacker, and we use
different surrogate models.

Target System
Surrogate System

Single Ensemble
w/o mmt w/ mmt w/o mmt w/ mmt

VGGFace 0.17 0.22 0.26 0.28
FaceNet 0.08 0.09 0.14 0.16
ArcFace18 0.02 0.03 0.05 0.06
ArcFace50 0.05 0.05 0.10 0.12
ArcFace101 0.02 0.03 0.02 0.03

Table A.4: Attack success rate of dodging sticker attacks on closed-set face recognition
systems. Here, only the target system’s training data is visible to the attacker, and we use
different surrogate models.

Target System
Surrogate System

Single Ensemble
w/o mmt w/ mmt w/o mmt w/ mmt

VGGFace 0.02 0.02 0.06 0.06
FaceNet 0.00 0.00 0.01 0.01
ArcFace18 0.00 0.00 0.01 0.01
ArcFace50 0.00 0.00 0.00 0.01
ArcFace101 0.00 0.01 0.04 0.04

[197]

Table A.5: Attack success rate of dodging face mask attacks on closed-set face recognition
systems. Here, only the target system’s training data is visible to the attacker, and we use
different surrogate models.

Target System
Surrogate System

Single Ensemble
w/o mmt w/ mmt w/o mmt w/ mmt

VGGFace 0.18 0.26 0.20 0.32
FaceNet 0.26 0.38 0.42 0.42
ArcFace18 0.21 0.33 0.21 0.33
ArcFace50 0.28 0.34 0.36 0.36
ArcFace101 0.22 0.34 0.30 0.36

Table A.6: Attack success rate of dodging attacks on open-set face recognition systems by
the universality of adversarial examples. Here, N represents the batch size of face images
that share a universal perturbation.

Target System Attack Type Attacker’s Capability
N=1 N=5 N=10 N=20

VGGFace

PGD 1.00 0.89 0.81 0.53
Eyeglass Frame 1.00 1.00 1.00 1.00

Sticker 1.00 1.00 1.00 1.00
Face Mask 1.00 1.00 1.00 1.00

FaceNet

PGD 1.00 0.02 0.02 0.02
Eyeglass Frame 1.00 1.00 1.00 1.00

Sticker 1.00 1.00 0.99 0.90
Face Mask 1.00 1.00 0.99 0.98

ArcFace18

PGD 1.00 0.96 0.79 0.46
Eyeglass Frame 0.99 0.86 0.70 0.67

Sticker 1.00 1.00 1.00 0.99
Face Mask 0.98 0.98 0.93 0.92

ArcFace50

PGD 1.00 0.91 0.75 0.47
Eyeglass Frame 0.99 0.78 0.67 0.62

Sticker 1.00 1.00 1.00 0.00
Face Mask 0.99 0.99 0.99 0.94

ArcFace101

PGD 1.00 0.68 0.68 0.41
Eyeglass Frame 1.00 0.85 0.73 0.65

Sticker 0.99 0.98 0.97 0.97
Face Mask 1.00 1.00 1.00 1.00

[198]

A.3 Universal Attacks

Finally, we evaluate open-set systems under universal dodging attacks. The results are

shown in Table A.6. Compared to Table 3.7 of Chapter 3, we find that open-set systems

are significantly more fragile to universal perturbations of all types than their closed-set

counterparts. For example, when N = 20, universal sticker attacks on open-set ArcFace101

have a 97% success rate, but no success in closed-set settings. Moreover, we again observe

that the universal grid-level face mask attack is more effective than the other perturbation

types. Here, we also find that the sticker attack is as potent as the face mask attack in

open-set settings.

[199]

Appendix B

Supplement for Chapter 6

B.1 Alternative Approach for Modeling Suspiciousness

Our second method of modeling the suspiciousness S(x) of an input image x leverages

a recent computational model of image salience, DeepGaze II [55]. DeepGaze II outputs

predicted pixel-level density of human fixations on an image with the total density over the

entire image summing to 1. Our measure of relative salience of the foreground to background

is the foreground score, which is defined as S(x) =
∑

i∈{k|F(x)k 6=0} si, where si is the saliency

score produced by DeepGaze II for pixel i of image x. Since foreground, as a fraction of

the image, tends to be around 50-60%, a score significantly higher than 0.5 indicates that

predicted human fixation is relatively localized to the foreground.

The above approach models background suspiciousness in a way that aligns with human

perception. One limitation should be noted: the DeepGaze II model is designed on non-

adversarial data and can thus be attacked. This may lead to adversarial examples that have

a salient background but achieve a high foreground score. However, we empirically find that

[200]

the DeepGaze II model is generally robust to perturbed images in practice. In most cases,

our attack produces non-salient background when λ 6= 0 in Eq. (6.1) of Chapter 6 (e.g., see

Figure B.1).

Dual-per turbation
Example ()

Dual-per turbation
Example ()

Or iginal
Sample

Foreground
Mask

Figure B.1: An illustration of dual-perturbation attacks that leverages fixation prediction
to model suspiciousness. Adversarial examples are with large `∞ perturbations on the
background (εB = 20/255) and small `∞ perturbations on the foreground (εF = 4/255). A
parameter λ is used to control background salience explicitly. Our attack produces non-salient
background when λ 6= 0.

B.2 Datasets

B.2.1 Segment-6

The statistics of the Segment-6 dataset are displayed in Table B.1.

B.2.2 STL-10

The statistics of the STL-10 dataset are displayed in Table B.2.

B.2.3 ImageNet-10

The labels and number of images per class in the ImageNet-10 dataset are listed in Table B.3.

[201]

Table B.1: Number of samples in each class of the Segment-6 dataset.

Class Number of samples
Training Test

Train 3,000 200
Bird 3,000 200
Cat 3,000 200
Dog 3,000 200
Toilet 3,000 200
Clock 3,000 200
Total 18,000 1,200

Table B.2: Number of samples in each class of the STL-10 dataset.

Class Number of samples
Training Test

Airplane 500 10
Bird 500 10
Car 500 10
Cat 500 10
Deer 500 10
Dog 500 10
Horse 500 10
Monkey 500 10
Ship 500 10
Truck 500 10
Total 5,000 100

[202]

Table B.3: Number of samples in each class of the ImageNet-10 dataset.

Class Number of samples
Training Test

Airplane 500 10
Car 500 10
Cat 500 10
Dog 500 10
Truck 500 10
Elephant 500 10
Zebra 500 10
Bus 500 10
Bear 500 10
Bicycle 500 10
Total 5,000 100

[203]

B.3 Implementations

We implemented all the attack model, as well as the defense approaches in PyTorch20, an open-

source library for neural network learning. We used the ResNet34 model [38] and standard

transfer learning, as the datasets employed in our experiments do not have a sufficient amount

of data to achieve high accuracy. Specifically, we initialized the network with the model

pre-trained on ImageNet, reset the final fully connected layer, and added a normalization

layer in front of the ResNet34 model, which performs a channel-wise transformation of an

input by subtracting (0.485, 0.456, 0.406) (the mean of ImageNet) and then being divided

by (0.229, 0.224, 0.225) (the standard deviation of ImageNet);21 then, we train the neural

networks as usual.

Unless otherwise specified, we used 60 epochs with training batch size 128 for Segment-6.

For STL-10 and ImageNet-10. we trained the classifiers for 20 epochs by using a batch size

of 64. We used Adam Optimizer [52] with initial learning rate of 10−4 for Clean, and 10−3 for

AT-PGD and AT-Dual, respectively. We dropped the learning rate by 0.1 every 20 epochs on

Segment-6, and similarly at the 8th and 15th epochs on STL-10 and ImageNet-10.

As mentioned above, we implemented PGD and dual-perturbation attacks, bounded by both

`∞ and `2 norms, to evaluate robustness of a classification model, as well as to build robust

classifiers. For `∞ attacks, when they were used for evaluation, they are performed with 20

steps; for training robust classifiers, these attacks were performed with 10 steps at each epoch

of adversarial training. Similarly, for `2 attacks, they were performed with 100 steps for

evaluation, and 50 steps for adversarial training. We used the semantic segmentation masks
20Available at https://pytorch.org/.
21To fit the Segment-6 dataset which contains much smaller images compared to ImageNet, we also reset

the first convolutional layer of the pre-trained ResNet34 model by reducing the kernel size from 7× 7 to 3× 3,
stride from 2 to 1, and pad from 3 to 1.

[204]

https://pytorch.org/

on the Segment-6 dataset and used fixation prediction to identify foreground and backround

on STL-10 and ImageNet-10.

B.4 Adversarial Training Using `2 Attacks on STL-10

Here, we present experimental results of the robustness of classifiers that use adversarial

training with `2 norm attacks on STL-10. Specifically, we trained AT-PGD using `2 PGD

attack with ε = 1.0, and AT-Dual by using `2 dual-perturbation attack with {εF , εB, λ} =

{1.0, 5.0, 0.0}. The results are shown in Figure B.2, B.3, B.4, and B.5.

= 0 = 0.0005 = 0.001
Adv.Clean

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Fo
re

gr
ou

nd
 sc

or
e

= 0 = 0.0005 = 0.001
Adv.AT-PGD

= 0 = 0.0005 = 0.001
Adv.AT-Dual

STL-10 | 2 dual-perturbation

0.0 0.0005 0.001
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | 2 dual-perturbation
Clean
AT-PGD

AT-Dual

Figure B.2: Saliency analysis. The `2 dual-perturbation attacks are performed by using
{εF , εB} = {1.0, 5.0}, and a variety of λ displayed in the figure. Left: foreground scores of
dual-perturbation examples in response to different classifiers. Right: accuracy of classifiers
on dual-perturbation examples with salience control.

[205]

0 0.5 1.0 1.5 2.0
F

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | 2 dual-perturbation
Clean AT-PGD AT-Dual

0 2.5 5.0 7.5 10.0
B

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | 2 dual-perturbation
Clean AT-PGD AT-Dual

0 0.5 1.0 1.5 2.0
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | 2 PGD
Clean AT-PGD AT-Dual

Figure B.3: Robustness to white-box `2 attacks on STL-10. Left: `2 dual-perturbation
attacks with different foreground distortions. εB is fixed to be 5.0 and λ = 0.0005. Middle:
`2 dual-perturbation attacks with different background distortions. εF is fixed to be 1.0 and
λ = 0.0005. Right: `2 PGD attacks.

Clean
AT-PGD

AT-Dual
Source

Clean

AT-PGD

AT-Dual

Ta
rg

et

0.000 0.110 0.500

0.770 0.130 0.420

0.750 0.610 0.330

STL-10 | 2 dual-perturbation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Accuracy

Clean
AT-PGD

AT-Dual
Source

Clean

AT-PGD

AT-Dual

Ta
rg

et

0.060 0.580 0.840

0.860 0.530 0.770

0.750 0.690 0.560

STL-10 | 2 PGD

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Accuracy

Figure B.4: Robustness against adversarial examples transferred from other models on STL-10.
Left: `2 dual-perturbation attacks performed by using {εF , εB, λ} = {1.0, 5.0, 0.0005} on
different source models. Right: `2 PGD attacks with ε = 1.0 on different source models.

0/255 2/255 4/255 6/255 8/255
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | PGD
Clean
AT-PGD

AT-Dual

0/255 2/255 4/255 6/255 8/255
F

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | dual-perturbation
Clean AT-PGD AT-Dual

0/255 10/255 20/255 30/255 40/255
B

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | dual-perturbation
Clean AT-PGD AT-Dual

0% 5% 10% 15% 20%
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | 0 JSMA
Clean AT-PGD AT-Dual

Figure B.5: Robustness to additional white-box attacks on STL-10. Left: 20 steps of `∞
PGD attacks. Middle left: 20 steps of `∞ dual-perturbation attacks with different foreground
distortions. εB is fixed to be 20/255 and λ = 0.0005. Middle right: 20 steps of `∞ dual-
perturbation attacks with different background distortions. εF is fixed to be 4/255 and
λ = 0.0005. Right: `0 JSMA attacks.

[206]

B.5 Adversarial Training Using `2 Attacks on Segment-6

Now, we present experimental results of the robustness of classifiers that use adversarial

training with `2 norm attacks on Segment-6. Since DeepGaze II only work on images with

more than 35 × 35 pixels, we are unable to use DeepGaze II to compute the foreground

score (FS) for Segment-6. Hence, in the following experiment on this dataset, we omit

the salience term in the optimization problem of Eq. (6.1) and Eq. (6.7) in Chapter 6.

Specifically, we trained AT-PGD using `2 PGD attack with ε = 0.5, and AT-Dual by using

`2 dual-perturbation attack with {εF , εB} = {0.5, 2.5}. The results are shown in Figure B.6,

B.7, and B.8.

0 0.25 0.5 0.75 1.0
F (B = 5 × F)

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Segment-6 | 2 dual-perturbation
Clean AT-PGD AT-Dual

0 0.25 0.5 0.75 1.0
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Segment-6 | 2 PGD
Clean AT-PGD AT-Dual

Figure B.6: Robustness to white-box `2 attacks on Segment-6. Left: `2 dual-perturbation
attacks with different foreground and background distortions. Right: `2 PGD attacks.

[207]

Clean
AT-PGD

AT-Dual
Source

Clean

AT-PGD

AT-Dual

Ta
rg

et
0.000 0.464 0.614

0.768 0.108 0.483

0.703 0.621 0.378

Segment-6 | 2 dual-perturbation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Accuracy

Clean
AT-PGD

AT-Dual
Source

Clean

AT-PGD

AT-Dual

Ta
rg

et

0.053 0.818 0.829

0.794 0.573 0.754

0.707 0.676 0.619

Segment-6 | 2 PGD

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Accuracy

Figure B.7: Robustness against adversarial examples transferred from other models on
Segment-6. Left: `2 dual-perturbation attacks performed by using {εF , εB} = {0.5, 2.5} on
different source models. Right: `2 PGD attacks with ε = 0.5 on different source models.

0/255 4/255 8/255 12/255 16/255
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Segment-6 | PGD
Clean AT-PGD AT-Dual

0/255 4/255 8/255 12/255 16/255
F (B = 5 × F)

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Segment-6 | dual-perturbation
Clean AT-PGD AT-Dual

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Segment-6 | 0 JSMA
Clean AT-PGD AT-Dual

Figure B.8: Robustness to additional white-box attacks on Segment-6. Left: 20 steps of `∞
PGD attacks. Middle: 20 steps of `∞ dual-perturbation attacks with different foreground
and background distortions. Right: `0 JSMA attacks.

B.6 Adversarial Training Using `∞ Attacks on ImageNet-

10

Next, we present experimental results of the robustness of classifiers that use adversarial

training with `∞ norm attacks on ImageNet-10. Specifically, we trained AT-PGD using

`∞ PGD attack with ε = 4/255, and AT-Dual by using `∞ dual-perturbation attack with

[208]

{εF , εB, λ} = {4/255, 20/255, 0.0}. The results are shown in Figure B.9, B.10, B.11, and

B.12.

= 0 = 0.005 = 0.01
Adv.Clean

0.6

0.7

0.8

0.9

Fo
re

gr
ou

nd
 sc

or
e

= 0 = 0.005 = 0.01
Adv.AT-PGD

= 0 = 0.005 = 0.01
Adv.AT-Dual

ImageNet-10 | dual-perturbation

0.0 0.005 0.01
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | dual-perturbation
Clean
AT-PGD

AT-Dual

Figure B.9: Saliency analysis. The `∞ dual-perturbation attacks are performed by using
{εF , εB} = {4/255, 20/255}, and a variety of λ displayed in the figure. Left: foreground
scores of dual-perturbation examples in response to different classifiers. Right: accuracy of
classifiers on dual-perturbation examples with salience control.

0/255 2/255 4/255 6/255 8/255
F

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | dual-perturbation
Clean AT-PGD AT-Dual

0/255 10/255 20/255 30/255 40/255
B

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | dual-perturbation
Clean AT-PGD AT-Dual

0/255 2/255 4/255 6/255 8/255
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | PGD
Clean AT-PGD AT-Dual

Figure B.10: Robustness to white-box `∞ attacks on ImageNet-10. Left: `∞ dual-perturbation
attacks with different foreground distortions. εB is fixed to be 20/255 and λ = 0.005. Middle:
`∞ dual-perturbation attacks with different background distortions. εF is fixed to be 4/255
and λ = 0.005. Right: `∞ PGD attacks.

[209]

Clean
AT-PGD

AT-Dual
Source

Clean

AT-PGD

AT-Dual

Ta
rg

et
0.000 0.870 0.910

0.890 0.410 0.630

0.850 0.700 0.610

ImageNet-10 | dual-perturbation

0.0

0.2

0.4

0.6

0.8

Accuracy

Clean
AT-PGD

AT-Dual
Source

Clean

AT-PGD

AT-Dual

Ta
rg

et

0.000 0.740 0.950

0.880 0.600 0.760

0.850 0.730 0.690

ImageNet-10 | PGD

0.0

0.2

0.4

0.6

0.8
Accuracy

Figure B.11: Robustness against adversarial examples transferred from other models
on ImageNet-10. Left: `∞ dual-perturbation attacks performed by using {εF , εB, λ} =
{4/255, 20/255, 0.005} on different source models. Right: `∞ PGD attacks with ε = 4/255 on
different source models.

0 1.0 2.0 3.0 4.0
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | 2 PGD
Clean AT-PGD AT-Dual

0 1.0 2.0 3.0 4.0
F

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | 2 dual-perturbation
Clean AT-PGD AT-Dual

0 10.0 20.0 30.0 40.0
B

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | 2 dual-perturbation
Clean AT-PGD AT-Dual

0% 2.5% 5% 7.5% 10%
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-10 | 0 JSMA
Clean AT-PGD AT-Dual

Figure B.12: Robustness to additional white-box attacks on ImageNet-10. Left: 100 steps
of `2 PGD attacks. Middle left: 100 steps of `2 dual-perturbation attacks with different
foreground distortions. εB is fixed to be 2.0 and λ = 0.005. Middle right: 100 steps of `2

dual-perturbation attacks with different background distortions. εF is fixed to be 20.0 and
λ = 0.005. Right: `0 JSMA attacks.

B.7 Adversarial Training Using `∞ Attacks on STL-10

Now, we present experimental results of the robustness of classifiers that use adversarial

training with `∞ norm attacks on STL-10. Specifically, we trained AT-PGD using `∞

PGD attack with ε = 4/255, and AT-Dual by using `∞ dual-perturbation attack with

{εF , εB, λ} = {4/255, 20/255, 0.0}. The results are shown in Figure B.13, B.14, B.15, and

B.16.

[210]

= 0 = 0.0005 = 0.0001
Adv.Clean

0.6

0.7

0.8

0.9

Fo
re

gr
ou

nd
 sc

or
e

= 0 = 0.0005 = 0.0001
Adv.AT-PGD

= 0 = 0.0005 = 0.0001
Adv.AT-Dual

STL-10 | dual-perturbation

0.0 0.0005 0.001
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | dual-perturbation
Clean
AT-PGD

AT-Dual

Figure B.13: Saliency analysis. The `∞ dual-perturbation attacks are performed by using
{εF , εB} = {4/255, 20/255}, and a variety of λ displayed in the figure. Left: foreground
scores of dual-perturbation examples in response to different classifiers. Right: accuracy of
classifiers on dual-perturbation examples with salience control.

0/255 2/255 4/255 6/255 8/255
F

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | dual-perturbation
Clean AT-PGD AT-Dual

0/255 10/255 20/255 30/255 40/255
B

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | dual-perturbation
Clean AT-PGD AT-Dual

0/255 2/255 4/255 6/255 8/255
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | PGD
Clean AT-PGD AT-Dual

Figure B.14: Robustness to white-box `∞ attacks on STL-10. Left: `∞ dual-perturbation
attacks with different foreground distortions. εB is fixed to be 20/255 and λ = 0.0005. Middle:
`∞ dual-perturbation attacks with different background distortions. εF is fixed to be 4/255
and λ = 0.0005. Right: `∞ PGD attacks.

[211]

Clean
AT-PGD

AT-Dual
Source

Clean

AT-PGD

AT-Dual

Ta
rg

et

0.000 0.610 0.800

0.760 0.310 0.570

0.700 0.610 0.460

STL-10 | dual-perturbation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Accuracy

Clean
AT-PGD

AT-Dual
Source

Clean

AT-PGD

AT-Dual

Ta
rg

et

0.000 0.840 0.900

0.770 0.530 0.690

0.710 0.620 0.550

STL-10 | PGD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Accuracy

Figure B.15: Robustness against adversarial examples transferred from other models
on STL-10. Left: `∞ dual-perturbation attacks performed by using {εF , εB, λ} =
{4/255, 20/255, 0.0005} on different source models. Right: `∞ PGD attacks with ε = 4/255
on different source models.

0 0.5 1.0 1.5 2.0
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | 2 PGD
Clean AT-PGD AT-Dual

0 0.5 1.0 1.5 2.0
F

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | 2 dual-perturbation
Clean AT-PGD AT-Dual

0 2.5 5.0 7.5 10.0
B

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-10 | 2 dual-perturbation
Clean AT-PGD AT-Dual

0% 5% 10% 15% 20%
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

STL-7 | 0 JSMA
Clean AT-PGD AT-Dual

Figure B.16: Robustness to additional white-box attacks on STL-10. Left: 100 steps of
`2 PGD attacks. Middle left: 100 steps of `2 dual-perturbation attacks with different
foreground distortions. εB is fixed to be 5.0 and λ = 0.0005. Middle right: 100 steps of `2

dual-perturbation attacks with different background distortions. εF is fixed to be 1.0 and
λ = 0.0005. Right: `0 JSMA attacks.

[212]

B.8 Adversarial Training Using `∞ Attacks on Segment-6

Finally, we present experimental results of the robustness of classifiers that use adversarial

training with `∞ norm attacks on Segment-6. We trained AT-PGD using `∞ PGD at-

tack with ε = 8/255, and AT-Dual by using `∞ dual-perturbation attack with {εF , εB} =

{8/255, 40/255}. The results are shown in Figure B.17, B.18, and B.19.

0/255 4/255 8/255 12/255 16/255
F (B = 5 × F)

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Segment-6 | dual-perturbation
Clean AT-PGD AT-Dual

0/255 4/255 8/255 12/255 16/255
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Segment-6 | PGD
Clean AT-PGD AT-Dual

Figure B.17: Robustness to white-box `∞ attacks on Segment-6. Left: `∞ dual-perturbation
attacks with different foreground and background distortions. Right: `∞ PGD attacks.

[213]

Clean
AT-PGD

AT-Dual
Source

Clean

AT-PGD

AT-Dual

Ta
rg

et

0.000 0.305 0.462

0.730 0.085 0.403

0.620 0.544 0.361

Segment-6 | dual-perturbation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Accuracy

Clean
AT-PGD

AT-Dual
Source

Clean

AT-PGD

AT-Dual

Ta
rg

et

0.000 0.729 0.767

0.745 0.456 0.676

0.625 0.588 0.496

Segment-6 | PGD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Accuracy

Figure B.18: Robustness against adversarial examples transferred from other models
on Segment-6. Left: `∞ dual-perturbation attacks performed by using {εF , εB} =
{8/255, 40/255} on different source models. Right: `∞ PGD attacks with ε = 8/255 on
different source models.

0 0.25 0.5 0.75 1.0
0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Segment-6 | 2 PGD
Clean AT-PGD AT-Dual

0 0.25 0.5 0.75 1.0
F (B = 5 × F)

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Segment-6 | 2 dual-perturbation
Clean AT-PGD AT-Dual

0 100 200 300 400
Iterations

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Segment-6 | 0 JSMA
Clean AT-PGD AT-Dual

Figure B.19: Robustness to additional white-box attacks on Segment-6. Left: 100 steps of `2

PGD attacks. Middle: 100 steps of `2 dual-perturbation attacks with different foreground
and background distortions. Right: `0 JSMA attacks.

B.9 Attacking Randomzied Classifiers

In addition to deterministic classifiers that make a deterministic prediction for a test sample,

our proposed attack can be adapted to stochastic classifiers that apply randomization at

training and prediction time. For example, for classifiers using randomized smoothing, we can

[214]

refine Eq. (6.1) in Chapter 6 as follows:

max
||δ◦F(x)||p≤εF ,
||δ◦B(x)||p≤εB

Eη∼N (0,σ2I)[L (hθ(x+ δ + η), y) + λ · S (x+ δ + η)], (B.1)

where σ2 is the variance of the Gaussian data augmentation in randomized smoothing.22 The

optimization problem in Eq. (B.1) can be solved by the same approach used for deterministic

classifiers, with the following modification on Eq. (6.5) at the second step in Section 6.2.4:

gF = G(F(x) ◦ ∇δ(k)Eη[L(hθ(x+ δ(k) + η), y) + λ · S

(
x+ δ(k) + η

)
])

gB = G(B(x) ◦ ∇δ(k)Eη[L(hθ(x+ δ(k) + η), y) + λ · S
(
x+ δ(k) + η

)
])

. (B.2)

B.9.1 Variance in Gaussian Data Augmentation

Table B.4 and B.5 show the effectiveness of Randomized Smoothing (RS) against the proposed

dual-perturbation attack. Here, we use different variances in Gaussian data augmentation of

RS, and fix the number of noise-corrupted copies at prediction time, n to be 100. It can be seen

that RS is generally fragile to the dual-perturbation attacks that are adapted to randomized

classifiers. Moreover, increasing σ, the variance used in Gaussian data augmentation can only

marginally improve adversarial robustness to dual-perturbation attacks while significantly

decrease accuracy on non-adversarial data.

B.9.2 Number of Samples with Gaussian Noise at Prediction Time

It has been observed that Randomized Smoothing (RS) can be computationally inefficient

at prediction time as it uses a large number of noise-corrupted copies for each test sample
22Note that the Gaussian perturbations are only used to compute the expection of loss and are not in the

resulting adversarial examples.

[215]

Table B.4: Robustness of RS against `∞ dual-perturbation attacks.

Dataset Defense approach Attack Strength (εB = 5× εF)
εF = 0/255 εF = 4/255 εF = 8/255 εF = 12/255 εF = 1

Segment-6
RS, σ = 0.25 71.4% 9.6% 0.4% 0.1% 0.0%
RS, σ = 0.5 61.7% 13.7% 1.9% 0.6% 0.2%
RS, σ = 1 47.7% 15.6% 2.8% 0.4% 0.2%

Table B.5: Robustness of RS against `2 dual-perturbation attacks on Segment-6.

Defense approach Attack Strength (εB = 5× εF)
εF = 0 εF = 0.25 εF = 0.5 εF = 0.75 εF = 1

RS, σ = 0.25 71.4% 29.7% 6.7% 0.9% 0.1%
RS, σ = 0.5 61.7% 31.6% 11.8% 3.1% 1.3%
RS, σ = 1 47.7% 28.2% 14.4% 6.0% 1.5%

at prediction time. It is natural to ask whether the prediction time of RS can be reduced

without significantly sacrificing adversarial robustness in practice. We answer this question

by studying the effectiveness of RS with different n, the numbers of noise-corrupted copies at

prediction time. Specifically, we fix σ = 0.5 and set n to be 1, 25, and 100. Note that when

n = 1, there is no two-sided hypothesis test for prediction; thus, no abstentions are obtained.

Here we use `∞ dual-perturbation attacks on RS for demonstration purposes. The results

are shown in Table B.6. It can be seen that when n = 25, the accuracy on both adversarial

and non-adversarial data can drop by up to 10% compared to RS using n = 100. The reason

is that under a small n, the prediction appears more likely to abstain. Interestingly, when

n = 1, the accuracy can be marginally improved compared to n = 100, with the prediction

time being reduced by 99%. This indicates that in practice, we would not lose accuracy

without using the two-sided hypothesis test at prediction time.

[216]

Table B.6: Robustness of RS against `∞ dual-perturbation attacks under different numbers
of noise-corrupted copies at prediction time.

Dataset Defense approach Attack Strength (εB = 5× εF)
εF = 0/255 εF = 4/255 εF = 8/255 εF = 12/255 εF = 1

Segment-6
RS, n = 1 66.0% 19.8% 3.2% 0.8% 0.3%
RS, n = 25 49.4% 9.1% 1.3% 0.5% 0.0%
RS, n = 100 61.7% 13.7% 1.9% 0.6% 0.2%

B.10 Visualization of Loss Gradient

Train Clock Cat Bird Dog Truck Airplane Truck Elephant

In
pu

t
C

le
an

A
T-

P
G

D
A

T-
D

ua
l

In
pu

t
C

le
an

A
T-

P
G

D
A

T-
D

ua
l

In
pu

t
C

le
an

A
T-

P
G

D
A

T-
D

ua
l

Segment-6 STL-10 ImageNet-10

Figure B.20: Visualization of loss gradient of different classifiers with respect to pixels of
non-adversarial inputs. AT-PGD and AT-Dual were obtained using adversarial training with
corresponding `2 norm attacks.

B.11 Examples of Dual-Perturbation Attacks

[217]

Original
Sample

Or iginal
Sample

Or iginal
Sample

 Dual
Per turbation

 Dual
Per turbation

 Dual
Per turbation

 Dual
Per turbation

 Dual
Per turbation

 Dual
Per turbation

Segment-6 STL-10 ImageNet-10

Figure B.21: Dual-perturbation attacks. Adversarial examples are produced in response to
the Clean model for each dataset.

[218]

Appendix C

Supplement for Chapter 8

C.1 Proof of Lemma 2

Proof. 1. First, we prove that An = λI +
∑n

i=1 θiθ
>
i is invertible, and its inverse matrix,

A−1
n , is positive definite by using mathematical induction.

When n = 1, A1 = λI + θ1θ
>
1 . As λI is an invertible square matrix and θ1 is a column

vector, by using Sherman-Morrison formula, A1 is invertible.

A−1
1 =

1

λ
(I− θ1θ

>
1

λ+ θ>1 θ1

).

For any non-zero column vector u, we have

u>A−1
1 u =

λu>u + u>uθ>1 θ1 − u>θ1θ
>
1 u

λ(λ+ θ>1 θ1)
.

[219]

As u>u > 0 and λ > 0, according to Cauchy-Schwarz inequality,

u>uθ>1 θ1 ≥ u>θ1θ
>
1 u,

Then, u>A−1
1 u > 0. Thus, A−1

1 is a positive definite matrix.

We then assume that when n = k(k ≥ 1), Ak is invertible and A−1
k is positive definite.

Then, when n = k + 1,

Ak+1 = Ak + θk+1θ
>
k+1.

As Ak is invertible, θk+1 is a column vector. By using Sherman-Morrison formula, we

have that Ak+1 is invertible, and

A−1
k+1 = A−1

k −
A−1
k θk+1θ

>
k+1A

−1
k

1 + θ>k+1A
−1
k θk+1

.

Then,

u>A−1
k+1u =

u>A−1
k u + u>A−1

k u · θ>k+1A
−1
k θk+1 − u>A−1

k θk+1 · θ>k+1A
−1
k u

1 + θ>k+1A
−1
k θk+1

As A−1
k is a positive definite matrix, we have u>A−1

k u > 0 and θ>k+1A
−1
k θk+1 > 0. By

using Extended Cauchy-Schwarz inequality, we have

u>A−1
k uθ>k+1A

−1
k θk+1 > u>A−1

k θk+1θ
>
k+1A

−1
k u.

Then, A−1
k+1 is positive definite. Hence, An = λI +

∑n
i=1 θiθ

>
i is invertible, and A−1

n is

positive definite. Similarly, we can prove that A−i is invertible, and A−1
−i is positive

definite.

[220]

2. We have proved that An and A−i are invertible. Then, the result can be obtained by

using Sherman-Morrison formula.

3. Let A−i,−j = A−i − θjθ>j . As A−i,−j is a symmetric matrix, its inverse, A−1
−i,−j is also

symmetric. Using a similar approach to the one above, we can prove that A−i,−j is

invertible and A−1
−i,−j is positive definite. By using Sherman-Morrison formula, we have

A−1
−i = A−1

−i,−j −
A−1
−i,−jθjθ

>
j A−1

−i,−j

1 + θ>j A−1
−i,−jθj

.

Then,

θ>i A−1
−iθi = θ>i A−1

−i,−jθi −
θ>i A−1

−i,−jθj · θ>j A−1
−i,−jθi

1 + θ>j A−1
−i,−jθj

= θ>i A−1
−i,−jθi −

(θ>i A−1
−i,−jθj)

2

1 + θ>j A−1
−i,−jθj

≤ θ>i A−1
−i,−jθi.

We then iteratively apply Sherman-Morrison formula and get

θ>i A−1
−iθi ≤ θ>i A−1

0 θi

=
1

λ
θ>i θi.

[221]

C.2 Proof of Lemma 3

Proof. Firstly, by using Sherman-Morrison formula we have

X∗θi = BnA
−1
n θi

= (B−i + zθ>i)(A−1
−i −

A−1
−iθiθ

>
i A−1

−i

1 + θ>i A−1
−iθi

)θi

= B−iA
−1
−iθi +

zθ>i A−1
−iθi −B−iA

−1
−iθiθ

>
i A−1

−iθi

1 + θ>i A−1
−iθi

=
(B−i + zθ>i)A−1

−iθi

1 + θ>i A−1
−iθi

=
BnA

−1
−iθi

1 + θ>i A−1
−iθi

.

Then,

`(X∗θi,y) = ||
BnA

−1
−iθi

1 + θ>i A−1
−iθi

− y||22

= ||
BnA

−1
−iθi − y − θ>i A−1

−iθiy

1 + θ>i A−1
−iθi

||22

≤ ||BnA
−1
−iθi − y − θ>i A−1

−iθiy||22

= ||(B−i + zθ>i)A−1
−iθi − y − θ>i A−1

−iθiy||22

= ||B−iA−1
−iθi − y + (z− y)θ>i A−1

−iθi||22

≤ `(B−iA
−1
−iθi,y) + ||z− y||22(θ>i A−1

−iθi)
2

By using Lemma 2, we have (θ>i A−1
−iθi)

2 ≤ 1
λ2

(θ>i θi)
2 which completes the proof.

[222]

C.3 Proof of Theorem 2

Proof. As presented in Lemma 3, we have

`(X∗θi,y) ≤ `(B−iA
−1
−iθi,y) +

1

λ2
||z− y||22(θ>i θi)

2.

By using Sherman-Morrison formula,

`(B−iA
−1
−iθi,y) = ||B−i(A−1

−i,−j −
A−1
−i,−jθjθ

>
j A−1

−i,−j

1 + θ>j A−1
−i,−jθj

)θi − y||22

≤ ||
B−iA

−1
−i,−jθi

1 + θ>j A−1
−i,−jθj

− y||22 +41(θ)

where j 6= i, and 41(θ) is a continuous function of θ = {θi}ni=1. As the action space Θ is

bounded, then 0 ≤ 41(θ) <∞. Hence, we have

`(B−iA
−1
−iθi,y) ≤ ||

B−iA
−1
−i,−jθi

1 + θ>j A−1
−i,−jθj

− y||22 +41(θ)

= ||
B−iA

−1
−i,−jθi − y − θ>j A−1

−i,−jθjy

1 + θ>j A−1
−i,−jθj

||22 +41(θ)

≤ ||B−iA−1
−i,−jθi − y − θ>j A−1

−i,−jθjy||22 +41(θ)

= ||(B−i,−j + zθ>j)A−1
−i,−jθi − y − θ>j A−1

−i,−jθjy||22 +41(θ)

= ||(B−i,−jA−1
−i,−jθi − y) + (z− y)θ>j A−1

−i,−jθi + θ>j A>−i,−j(θi − θj)y||22 +41(θ)

≤ `(B−i,−jA
−1
−i,−jθi,y) + ||(z− y)||22(θ>j A−1

−i,−jθi)
2 +42(θ)

[223]

where42(θ) is a continuous function of θ and 0 ≤ 42(θ) <∞. Let A−i,−j,−k = A−i,−j−θkθ>k ,

then, similarly, (θ>j A−1
−i,−jθi)

2 can be further relaxed as follows.

(θ>j A−1
−i,−jθi)

2 = (θ>j (A−1
−i,−j,−k −

A−1
−i,−j,−kθkθ

>
k A−1

−i,−j,−k

1 + θ>k A−1
−i,−j,−kθk

)θi)
2

≤ (θ>j A−1
−i,−j,−kθi)

2 +43(θ)

where 0 ≤ 43(θ) <∞, using the same approach,(θ>j A−1
−i,−jθi)

2 can be further and iteratively

relaxed as follows,

(θ>j A−1
−i,−jθi)

2 ≤ (θ>j A−1
0 θi)

2 +44(θ)

=
1

λ2
(θ>j θi)

2 +44(θ)

where 0 ≤ 44(θ) <∞. Combining the results above, we can iteratively relax `(B−iA−1
−iθi,y)

as follows,

`(B−iA
−1
−iθi,y) ≤ `(B−i,−jA

−1
−i,−jθi,y) +

1

λ2
||z− y||22(θ>j θi)

2 +45(θ)

≤ `(Xθi,y) +
1

λ2
||z− y||22

∑
j 6=i

(θ>j θi)
2 +4(θ)

where 0 ≤ 45(θ) <∞ and 0 ≤ 4(θ) <∞. Then,

`(X∗θi,y) ≤ `(B−iA
−1
−iθi,y) +

1

λ2
||z− y||22(θ>i θi)

2

≤ `(Xθi,y) +
1

λ2
||z− y||22

n∑
j=1

(θ>j θi)
2 +4(θ).

[224]

Hence,

ci(θi,θ−i) = β`(X∗θi,y) + (1− β)`(Xθi,y)

≤ `(Xθi,y) +
β

λ2
||z− y||22

n∑
j=1

(θ>j θi)
2 + ε

where ε is a constant such that ε = β ∗maxθ{4(θ)} <∞.

C.4 Proof of Theorem 4

Proof. We have known that 〈N ,Θ, (c̃i)〉 has at least NE, and each learner has an nonempty,

compact and convex action space Θ. Hence, we can apply Theorem 2 and Theorem 6 of [92].

That is, for some fixed {ri}ni (0 < ri < 1,
∑n

i=1 ri = 1), if the matrix in Eq. (C.1) is positive

definite, then 〈N ,Θ, (c̃i)〉 has a unique NE.

Jr(θ) =

r1∇θ1,θ1 c̃1(θ) . . . r1∇θ1,θn c̃1(θ)

...
...

rn∇θn,θ1 c̃n(θ) . . . rn∇θn,θn c̃n(θ)

 (C.1)

By taking second-order derivatives, we have

∇θi,θi c̃i(θ) = 2X>X +
2β||z− y||22

λ2
(4θiθ

>
i + 2θ>i θiI +

∑
j 6=i

θjθ
>
j)

and

∇θi,θj c̃i(θ) =
2β||z− y||22

λ2
(θ>i θjI + θjθ

>
i)

[225]

We first let r1 = r2 = ... = rn = 1
n
and decompose Jr(θ) as follows,

Jr(θ) =
2

n
P +

2β||z− y||22
λ2n

(Q + S + T), (C.2)

where P and Q are block diagonal matrices such that Pii = X>X, Pij = 0, Qii = 4θiθ
>
i +

θ>i θiI and Qij = 0, ∀i, j ∈ N , j 6= i. S and T are block symmetric matrices such that

Sii = θ>i θiI, Sij = θ>i θjI, Tii =
∑

j 6=i θjθ
>
j and Tij = θjθ

>
i , ∀i, j ∈ N , j 6= i.

Next, we prove that P is positive definite, and Q, S and T are positive semi-definite. Let

u = [u>1 , ...,u
>
n]> be an nd× 1 vector, where ui ∈ Rd×1(i ∈ N) are not all zero vectors.

1. u>Pu =
∑n

i=1 u>i X>Xui =
∑n

i=1 ||Xui||22. As the columns of X are linearly indepen-

dent and ui are not all zero vectors, there exists at least one ui such that Xui 6= 0.

Hence, u>Pu > 0 which indicates that P is positive definite.

2. Similarly, u>Qu ≥ 0 which indicates that Q is a positive semi-definite matrix.

3. Let’s S∗ ∈ Rn×n be a symmetric matrix such that S∗ii = θ>i θi and S∗ij = θ>i θj, ∀i, j ∈

N , j 6= i. Hence, Sij = S∗ijI, ∀i, j ∈ N . Note that S∗ = [θ1,θ2, ...,θn]>[θ1,θ2, ...,θn] is

a positive semi-definite matrix, as it is also symmetric, there exists at least one lower

triangular matrix L∗ ∈ Rn×n with non-negative diagonal elements [41] such that

S∗ = L∗L∗>(Cholesky Decomposition)

Let L be a block matrix such that Lij = L∗ijI, ∀i, j ∈ N . Therefore, (LL>)ij =

(L∗L∗>)ijI = S∗ijI = Sij which indicates that S = LL> is a positive semi-definite

matrix.

[226]

4. Since

u>Tu =
n∑
i=1

∑
j 6=i

(u>i θj)
2 +

n∑
i=1

∑
j 6=i

(u>i θj)(u
>
j θi)

=
n∑
i=1

∑
j 6=i

[
1

2
(u>i θj)

2 +
1

2
(u>j θi)

2 + (u>i θj)(u
>
j θi)]

=
1

2

n∑
i=1

∑
j 6=i

(u>i θj + u>j θi)
2

≥ 0,

T is a positive semi-definite matrix.

Combining the results above, Jr(θ) is a positive definite matrix which indicates that

〈N ,Θ, (c̃i)〉 has a unique NE. As Theorem 3 points out, the game has at least one symmetric

NE. Therefore, the NE is unique and must be symmetric.

C.5 Supplementary Results for The Red Wine Dataset

0 0.10.20.30.40.50.60.70.80.91.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.52
4
6
8

10 0.8

1.6

2.4

3.2

4.0

0 0.10.20.30.40.50.60.70.80.91.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.52
4
6
8

10 0.8

1.6

2.4

3.2

4.0

0 0.10.20.30.40.50.60.70.80.91.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.52
4
6
8

10 0.8

1.6

2.4

3.2

4.0

0 0.10.20.30.40.50.60.70.80.91.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.52
4
6
8

10 0.8

1.6

2.4

3.2

4.0

Figure C.1: Overestimated z, λ̂ = 0.5, β̂ = 0.8.The average RMSE across different values of
actual λ and β on the redwine dataset. From left to right: MLSG, Lasso, Ridge, OLS.

[227]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 0.8

1.6

2.4

3.2

4.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 0.8

1.6

2.4

3.2

4.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 0.8

1.6

2.4

3.2

4.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 0.8

1.6

2.4

3.2

4.0

Figure C.2: Overestimated z, λ̂ = 1.5, β̂ = 0.8. The average RMSE across different values of
actual λ and β on the red wine dataset. From left to right: MLSG, Lasso, Ridge, OLS.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 0.8

1.6

2.4

3.2

4.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 0.8

1.6

2.4

3.2

4.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 0.8

1.6

2.4

3.2

4.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 0.8

1.6

2.4

3.2

4.0

Figure C.3: Underestimated z, λ̂ = 1.5, β̂ = 0.8. The average RMSE across different values
of actual λ and β on the red wine dataset. From left to right: MLSG, Lasso, Ridge, OLS.

[228]

C.6 Supplementary Results for The Boston Dataset

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
R

M
S

E
Lasso
OLS
Ridge
MLSG

Figure C.4: The defender knows λ, β, and z. RMSE of y
′ and y on the Boston dataset. The

defender knows λ, β, and z.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 5.0

7.5

10.0

12.5

15.0

17.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 5.0

7.5

10.0

12.5

15.0

17.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 5.0

7.5

10.0

12.5

15.0

17.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 5.0

7.5

10.0

12.5

15.0

17.5

Figure C.5: Overestimated z, λ̂ = 0.3, β̂ = 0.8. The average RMSE across different values of
actual λ and β on the Boston dataset. From left to right: MLSG, Lasso, Ridge, OLS.

[229]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 5.0

7.5

10.0

12.5

15.0

17.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 5.0

7.5

10.0

12.5

15.0

17.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 5.0

7.5

10.0

12.5

15.0

17.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 5.0

7.5

10.0

12.5

15.0

17.5

Figure C.6: Underestimated z, λ̂ = 0.3, β̂ = 0.8. The average RMSE across different values
of actual λ and β on the Boston dataset. From left to right: MLSG, Lasso, Ridge, OLS.

C.7 Supplementary Results for The PDF dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 1.6

2.0

2.4

2.8

3.2

3.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 1.6

2.0

2.4

2.8

3.2

3.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 1.6

2.0

2.4

2.8

3.2

3.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
2
4
6
8

10 1.6

2.0

2.4

2.8

3.2

3.6

Figure C.7: Overestimated z, λ̂ = 1.5, β̂ = 0.5. The average RMSE across different values of
actual λ and β on PDF dataset. From left to right: MLSG, Lasso, Ridge, OLS.

[230]

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Chapter 1: Introduction
	1.1 Motivation and Challenges
	1.2 Overview of The Thesis

	Chapter 2: Background and Related Work
	2.1 Machine Learning in Security
	2.1.1 Malware Detection
	2.1.2 Face Recognition

	2.2 Decision-Time Attacks on Machine Learning Systems
	2.2.1 Realizable Attacks
	2.2.2 Feature-Space Attack Models

	2.3 Robust Learning
	2.3.1 Adversarial Training
	2.3.2 Randomized Smoothing

	2.4 Reinforcement Learning
	2.4.1 Deep Reinforcement Learning
	2.4.2 Multi-Agent Reinforcement Learning

	2.5 Alert Management and Prioritization

	I Systematizing Adversarial Evaluation of Machine Learning Systems
	Chapter 3: Fine-Grained Robustness Evaluation for Face Recognition Systems
	3.1 Overview
	3.2 Methodology
	3.2.1 Perturbation Type (P)
	3.2.2 Attacker's System Knowledge (K)
	3.2.3 Attacker's Goal (G)
	3.2.4 Attacker's Capability (C)

	3.3 Experimental Results
	3.3.1 Experimental Setup
	3.3.2 Robustness of Face Recognition Components
	3.3.3 Robustness Under Universal Attacks
	3.3.4 Is ``Robust'' Face Recognition Really Robust?

	3.4 Conclusion

	II Robust Learning against Decision-Time Attacks
	Chapter 4: How Robust Is Robust ML?
	4.1 Overview
	4.2 A Framework for Validating Models of ML Evasion Attacks
	4.3 Experimental Methodology
	4.3.1 PDF Document Structure
	4.3.2 Target Classifiers
	4.3.3 Realizable Evasion Attacks
	4.3.4 Feature-Space Evasion Model
	4.3.5 Datasets
	4.3.6 Implementation of Iterative Adversarial Retraining
	4.3.7 Evaluation Metrics

	4.4 Efficacy of Feature-Space Attack Models
	4.4.1 Structure-Based PDF Malware Classification
	4.4.2 Content-Based PDF Malware Classification
	4.4.3 Discussion

	4.5 Conclusion

	Chapter 5: Defending against Realizable Attacks in PDF Malware Detection
	5.1 Overview
	5.2 Identifying Conserved Features
	5.2.1 Structural Path Deletion
	5.2.2 Structural Path Replacement
	5.2.3 Obtaining a Uniform Conserved Feature Set
	5.2.4 Identifying Conserved Features for Other Classifiers

	5.3 Classifying Using Only Conserved Features
	5.4 Feature-Space Model with Conserved Features
	5.4.1 SL2013
	5.4.2 Hidost
	5.4.3 Binarized PDFRate

	5.5 Additional Realizable Evasion Attacks
	5.5.1 Mimicry and Mimicry+ Attacks
	5.5.2 MalGAN Attack
	5.5.3 Reverse Mimicry Attack
	5.5.4 The Custom Attack

	5.6 Conclusion

	Chapter 6: Defending against Non-Salient Adversarial Examples in Image Classification
	6.1 Overview
	6.2 Dual-Perturbation Attacks
	6.2.1 Motivation
	6.2.2 Modeling Non-Salient Adversarial Examples
	6.2.3 Identifying Foreground and Background
	6.2.4 Computing Dual-Perturbation Attacks

	6.3 Defense Approach
	6.4 Experimental Results
	6.4.1 Experimental Setup
	6.4.2 Saliency Analysis of Dual-Perturbation Adversarial Examples
	6.4.3 Robustness against Non-Salient Adversarial Examples
	6.4.4 Generalizability of Defense
	6.4.5 Analysis of Defense

	6.5 Conclusion

	III Robust Detection Pipeline
	Chapter 7: Finding Needles in a Moving Haystack: Prioritizing Alerts with Adversarial Reinforcement Learning
	7.1 Overview
	7.2 System Model
	7.2.1 Attack Detection Environment (ADE) Model
	7.2.2 Threat Model
	7.2.3 Defender Model
	7.2.4 An Illustrative Example

	7.3 Game Theoretic Model of Robust Alert Prioritization
	7.3.1 Strategies
	7.3.2 Utilities
	7.3.3 Solution Concept

	7.4 Computing Robust Alert Prioritization Policies
	7.4.1 Solution Overview
	7.4.2 Policy-Based Double Oracle Method
	7.4.3 Approximate Best Response Oracles with Neural Reinforcement Learning
	7.4.4 Preprocessing

	7.5 Experimental Results
	7.5.1 Experimental Methodology
	7.5.2 Case Study I: Network Intrusion Detection
	7.5.3 Case Study II: Fraud Detection
	7.5.4 Computational Cost

	7.6 Conclusion

	IV Robust Decentralized Learning Ecosystem
	Chapter 8: One VS. Many: Adversarial Regression with Multiple Learners
	8.1 Overview
	8.2 Model
	8.2.1 Modeling the Players
	8.2.2 The Multi-Learner Stackerlberg Game

	8.3 Theoretical Analysis
	8.3.1 Approximation of The Game
	8.3.2 Existence of Nash Equilibrium
	8.3.3 Uniqueness of Nash Equilibrium

	8.4 Computing the Equilibrium
	8.5 Robustness Analysis
	8.6 Experimental Results
	8.6.1 Experimental Setup
	8.6.2 The Red Wine Dataset
	8.6.3 The PDF Dataset

	8.7 Conclusion

	Chapter 9: Conclusion and Future Directions
	References
	Appendix A: Supplement for Chapter 3
	A.1 Robustness of Face Recognition Components
	A.1.1 Open-Set Systems Under Dodging Attacks
	A.1.2 Closed-Set Systems Under Impersonation Attacks
	A.1.3 Open-Set Systems Under Impersonation Attacks

	A.2 Efficacy of Using Momentum and Ensemble Models in Transfer-based Attacks
	A.3 Universal Attacks

	Appendix B: Supplement for Chapter 6
	B.1 Alternative Approach for Modeling Suspiciousness
	B.2 Datasets
	B.2.1 Segment-6
	B.2.2 STL-10
	B.2.3 ImageNet-10

	B.3 Implementations
	B.4 Adversarial Training Using 2 Attacks on STL-10
	B.5 Adversarial Training Using 2 Attacks on Segment-6
	B.6 Adversarial Training Using Attacks on ImageNet-10
	B.7 Adversarial Training Using Attacks on STL-10
	B.8 Adversarial Training Using Attacks on Segment-6
	B.9 Attacking Randomzied Classifiers
	B.9.1 Variance in Gaussian Data Augmentation
	B.9.2 Number of Samples with Gaussian Noise at Prediction Time

	B.10 Visualization of Loss Gradient
	B.11 Examples of Dual-Perturbation Attacks

	Appendix C: Supplement for Chapter 8
	C.1 Proof of Lemma 2
	C.2 Proof of Lemma 3
	C.3 Proof of Theorem 2
	C.4 Proof of Theorem 4
	C.5 Supplementary Results for The Red Wine Dataset
	C.6 Supplementary Results for The Boston Dataset
	C.7 Supplementary Results for The PDF dataset

